REDUCED-ORDER COMPENSATION USING THE HYLAND-BERNSTEIN OPTIMAL PROJECTION EQUATIONS
暂无分享,去创建一个
[1] M. Athans,et al. Optimal limited state variable feedback controllers for linear systems , 1971 .
[2] J. H. Avila. The Feasibility of Continuation Methods for Nonlinear Equations , 1974 .
[3] J. Yorke,et al. The homotopy continuation method: numerically implementable topological procedures , 1978 .
[4] Joe Brewer,et al. Kronecker products and matrix calculus in system theory , 1978 .
[5] Arthur E. Bryson,et al. Attitude Control of a Flexible Spacecraft , 1978 .
[6] J. R. Newsom,et al. Reduced-Order Optimal Feedback Control Law Synthesis for Flutter Suppression , 1982 .
[7] R. Decarlo,et al. A homotopy-method for eigenvalue assignment using decentralized state feedback , 1984, 1982 21st IEEE Conference on Decision and Control.
[8] S. Richter,et al. Continuation methods: Theory and applications , 1983 .
[9] F. J. Gould,et al. Homotopy methods and global convergence , 1983 .
[10] R. Skelton,et al. A note on balanced controller reduction , 1984 .
[11] James D. Turner,et al. Optimal distributed control of a flexible spacecraft during a large-angle maneuver , 1984 .
[12] J. Junkins,et al. Robust nonlinear least squares estimation using the Chow-Yorke homotopy method , 1984 .
[13] R. H. Cannon,et al. Experiments in control of flexible structures with noncolocated sensors and actuators , 1984 .
[14] D. Bernstein,et al. The optimal projection equations for fixed-order dynamic compensation , 1984 .
[15] Pertti M. Mäkilä,et al. Parametric LQ control , 1985 .
[16] Arthur E. Bryson,et al. Design of low-order compensators using parameter optimization , 1985, Autom..
[17] J. Junkins,et al. A Sequential Linear Optimization Approach for Controller Design , 1985 .
[18] A. Calise,et al. Convergence of a numerical algorithm for calculating optimal output feedback gains , 1985 .
[19] R. Decarlo,et al. A continuation algorithm for eigenvalue assignment by decentralized constant-output feedback , 1985 .
[20] Raymond A. DeCarlo,et al. Feedback gain optimization in decentralized eigenvalue assignment , 1986, Autom..
[21] Richard W. Longman,et al. A homotopy approach to the feedback stabilization of linear systems , 1987 .
[22] P. Makila,et al. Computational methods for parametric LQ problems--A survey , 1987 .
[23] Layne T. Watson,et al. Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.
[24] R. Skelton,et al. Controller reduction using canonical interactions , 1987, 26th IEEE Conference on Decision and Control.
[25] Hannu T. Toivonen,et al. Newton's method for solving parametric linear quadratic control problems , 1987 .
[26] B. Anderson,et al. Controller Reduction: Concepts and Approaches , 1987, 1987 American Control Conference.
[27] V. Mukhopadhyay. Stability robustness improvement using constrained optimization techniques , 1987 .
[28] Udo Kuhn,et al. Fresh look into the design and computation of optimal output feedback controls for linear multivariable systems , 1987 .
[29] L. Watson,et al. Tracing structural optima as a function of available resources by a homotopy method , 1988 .
[30] Vivekananda Mukhopadhyay. Digital robust control law synthesis using constrained optimization , 1989 .
[31] Dennis S. Bernstein,et al. Robust stability and performance via fixed-order dynamic compensation with guaranteed cost bounds , 1990, Math. Control. Signals Syst..
[32] Yi Liu,et al. Coprime factorization controller reduction with bezout identity induced frequency weighting , 1990, Autom..
[33] David C. Hyland,et al. On direct versus indirect methods for reduced-order controller design , 1990 .
[34] Lee D. Peterson,et al. Optimal projection control of an experimental truss structure , 1991 .
[35] M. Mercadal. HOMOTOPY APPROACH TO OPTIMAL, LINEAR QUADRATIC, FIXED ARCHITECTURE COMPENSATION , 1991 .
[36] R. T. Haftka,et al. Tracing the Efficient Curve for Multi-objective Control-Structure Optimization , 1991 .
[37] E.G. Collins,et al. Robust decentralized control laws for the ACES structure , 1991, IEEE Control Systems.
[38] D. Bernstein,et al. Homotopy Methods for Solving the Optimal Projection Equations for the H2 Reduced Order Model Problem , 1992 .
[39] Emmanuel G. Collins,et al. Design of Reduced-Order, H2 Optimal Controllers Using a Homotopy Algorithm , 1993, 1993 American Control Conference.
[40] E. Collins,et al. Efficient computation of the solutions to modified Lyapunov equations , 1993 .
[41] Emmanuel G. Collins,et al. An input normal form homotopy for the L2 optimal model order reduction problem , 1994, IEEE Trans. Autom. Control..