Hidden Conditional Random Fields

We present a discriminative latent variable model for classification problems in structured domains where inputs can be represented by a graph of local observations. A hidden-state conditional random field framework learns a set of latent variables conditioned on local features. Observations need not be independent and may overlap in space and time.

[1]  S. Geman,et al.  Hidden Markov Random Fields , 1995 .

[2]  Alex Pentland,et al.  Real-time American Sign Language recognition from video using hidden Markov models , 1995 .

[3]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Part-Of-Speech Tagging , 1996, EMNLP.

[4]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Vladimir Pavlovic,et al.  Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Kirsti Grobel,et al.  Video-Based Sign Language Recognition Using Hidden Markov Models , 1997, Gesture Workshop.

[7]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Christopher D. Manning,et al.  Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger , 2000, EMNLP.

[9]  Narendra Ahuja,et al.  Learning to Recognize 3D Objects with SNoW , 2000, ECCV.

[10]  Andrew McCallum,et al.  Maximum Entropy Markov Models for Information Extraction and Segmentation , 2000, ICML.

[11]  Ashish Kapoor,et al.  A real-time head nod and shake detector , 2001, PUI '01.

[12]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[13]  Trevor Darrell,et al.  3-D articulated pose tracking for untethered diectic reference , 2002, Proceedings. Fourth IEEE International Conference on Multimodal Interfaces.

[14]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[15]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  Trevor Darrell,et al.  Adaptive view-based appearance models , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[18]  Sanjiv Kumar Multiclass Discriminative Fields for Parts-Based Object Detection , 2004 .

[19]  Antonio Torralba,et al.  Contextual Models for Object Detection Using Boosted Random Fields , 2004, NIPS.

[20]  T. Kobayashi,et al.  A conversation robot using head gesture recognition as para-linguistic information , 2004, RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759).

[21]  Cristian Sminchisescu,et al.  Conditional models for contextual human motion recognition , 2006, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Trevor Darrell,et al.  Contextual recognition of head gestures , 2005, ICMI '05.

[23]  Alex Acero,et al.  Hidden conditional random fields for phone classification , 2005, INTERSPEECH.

[24]  Michael Collins,et al.  Hidden-Variable Models for Discriminative Reranking , 2005, HLT.

[25]  Trevor Darrell,et al.  Hidden Conditional Random Fields for Gesture Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).