Syngas production by CO2 reforming of coke oven gas over Ni/La2O3–ZrO2 catalysts

[1]  Suojiang Zhang,et al.  Coke oven gas: Availability, properties, purification, and utilization in China , 2013 .

[2]  J. A. Menéndez,et al.  Equilibrium prediction of CO2 reforming of coke oven gas: Suitability for methanol production , 2012 .

[3]  Bo-Qing Xu,et al.  Nanocomposite Ni/ZrO2: Highly active and stable catalyst for H2 production via cyclic stepwise methane reforming reactions , 2012 .

[4]  J. P. Holgado,et al.  LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase , 2012 .

[5]  Beatriz Fidalgo,et al.  CO2 reforming of coke oven gas over a Ni/γAl2O3 catalyst to produce syngas for methanol synthesis , 2012 .

[6]  A. Gómez-Cortés,et al.  Methane oxidation over Pd catalysts supported on binary Al2O3–La2O3 oxides prepared by the sol–gel method , 2012 .

[7]  Shaomin Liu,et al.  Steam reforming of acetic acid over Ni/ZrO2 catalysts: Effects of nickel loading and particle size on product distribution and coke formation , 2012 .

[8]  E. Kondratenko,et al.  Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst , 2012 .

[9]  M. Rezaei,et al.  Autothermal reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area , 2012 .

[10]  Julian R.H. Ross,et al.  The effect of potassium on the activity and stability of Ni–MgO–ZrO2 catalysts for the dry reforming of methane to give synthesis gas , 2011 .

[11]  K. Efimov,et al.  Influence of the preparation methods on the microstructure and oxygen permeability of a CO2‐stable dual phase membrane , 2011 .

[12]  Yuhan Sun,et al.  Catalytic performance and characterization of Ni-CaO-ZrO2 catalysts for dry reforming of methane , 2011 .

[13]  S. H. Kim,et al.  Effects of La2O3 on ZrO2 supported Ni catalysts for autothermal reforming of CH4 , 2011 .

[14]  Behzad Nematollahi,et al.  Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts , 2011 .

[15]  Xuefeng Zhu,et al.  Effects of sintering temperature on properties of dual-phase oxygen permeable membranes , 2011 .

[16]  Hailei Zhao,et al.  Hydrogen production by catalytic partial oxidation of coke oven gas in BaCo0.7Fe0.2Nb0.1O3−δ membranes with surface modification , 2011 .

[17]  Beatriz Fidalgo,et al.  Dry Reforming of Coke Oven Gases Over Activated Carbon to Produce Syngas for Methanol Synthesis , 2010 .

[18]  Ming Luo,et al.  Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier , 2010 .

[19]  J. A. Menéndez,et al.  Synthesis of carbon-supported nickel catalysts for the dry reforming of CH4 , 2010 .

[20]  J. A. Menéndez,et al.  Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst , 2010 .

[21]  Z. Pászti,et al.  Methane dry reforming with CO2: A study on surface carbon species , 2010 .

[22]  Yongfa Zhang,et al.  CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst , 2010 .

[23]  Jihui Wang,et al.  Characterization and Analysis of Carbon Deposited during the Dry Reforming of Methane over Ni/La2O3/Al2O3 Catalysts , 2009 .

[24]  Xionggang Lu,et al.  Hydrogen Production by Reforming of Simulated Hot Coke Oven Gas over Nickel Catalysts Promoted with Lanthanum and Cerium in a Membrane Reactor , 2009 .

[25]  E. Assaf,et al.  Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane , 2009 .

[26]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[27]  Sanbing Zhang,et al.  Effect of calcination temperature on structure and performance of Ni/TiO2-SiO2 catalyst for CO2 reforming of methane , 2008 .

[28]  W. Yoon,et al.  Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process , 2008 .

[29]  Z. Hou,et al.  Production of Syngas via Partial Oxidation and CO2 Reforming of Coke Oven Gas over a Ni Catalyst , 2008 .

[30]  Michael Q. Wang,et al.  Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills , 2008 .

[31]  D. Kunzru,et al.  Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: Effect of support and metal loading , 2007 .

[32]  Nobuhiro Maruoka,et al.  Exergy recovery from steelmaking off-gas by latent heat storage for methanol production , 2006 .

[33]  D. Resasco,et al.  Study of Ni catalysts on different supports to obtain synthesis gas , 2005 .

[34]  D. Leung,et al.  Characteristics of the synthesis of methanol using biomass-derived syngas , 2005 .

[35]  Qin-Hui Zhang,et al.  Reforming of methane and coalbed methane over nanocomposite Ni/ZrO2 catalyst , 2004 .

[36]  George A. Olah,et al.  After Oil and Gas: Methanol Economy , 2004 .

[37]  X. Verykios Catalytic dry reforming of natural gas for the production of chemicals and hydrogen , 2003 .

[38]  K. Jun,et al.  Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane , 2002 .

[39]  K. L. Tan,et al.  CO2 Reforming of Methane to Synthesis Gas over Sol–Gel-made Ni/γ-Al2O3 Catalysts from Organometallic Precursors , 2000 .

[40]  Susan M. Stagg-Williams,et al.  CO2 Reforming of CH4 over Pt/ZrO2 Catalysts Promoted with La and Ce Oxides , 2000 .