Fatigue of Metal Hollow Spheres Structures

[1]  E. Maire,et al.  Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements , 2008 .

[2]  L. Salvo,et al.  Mechanical Behaviour of Metallic Hollow Spheres Foam , 2008 .

[3]  P. Cloetens,et al.  In Situ X-Ray Tomography Studies of Microstructural Evolution Combined with 3D Modeling , 2008 .

[4]  C. Motz,et al.  Experimental Investigation of Mechanical Properties of Metallic Hollow Sphere Structures , 2008 .

[5]  Chi Feng Lin,et al.  Impact and fracture response of sintered 316L stainless steel subjected to high strain rate loading , 2007 .

[6]  Valérie Sauvant-Moynot,et al.  Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography , 2007 .

[7]  Jean Pierre Verriest,et al.  Finite element modeling of the head skeleton with a new local quantitative assessment approach , 2006, IEEE Transactions on Biomedical Engineering.

[8]  R. Pippan,et al.  Fatigue crack propagation in cellular metals , 2005 .

[9]  E. Maire,et al.  Finite element modelling of the actual structure of cellular materials determined by X-ray tomography , 2005 .

[10]  Laurent Babout,et al.  Damage initiation in model metallic materials: X-ray tomography and modelling , 2004 .

[11]  P. Cloetens,et al.  X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems , 2003 .

[12]  Luc Salvo,et al.  In Situ X-Ray Tomography Measurements of Deformation in Cellular Solids , 2003 .

[13]  Luc Salvo,et al.  Effect of microstructural topology upon the stiffness and strength of 2D cellular structures , 2002 .

[14]  Peter Cloetens,et al.  In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography , 2002 .

[15]  E. Maire,et al.  On the application of x-ray microtomography in the field of materials science , 2001 .

[16]  S. Stanzl-Tschegg,et al.  Fatigue properties of aluminium foams at high numbers of cycles , 2000 .

[17]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[18]  Mccullough,et al.  The stress–life fatigue behaviour of aluminium alloy foams , 2000 .

[19]  M. Ashby,et al.  Fatigue failure of an open cell and a closed cell aluminium alloy foam , 1999 .

[20]  P. Rüegsegger,et al.  Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. , 1998, Journal of biomechanics.

[21]  P. George,et al.  3D Delaunay mesh generation coupled with an advancing-front approach , 1998 .

[22]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[23]  E. Maire,et al.  Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography , 2007 .

[24]  Liang,et al.  Geometric and Topological Analysis of Three-Dimensional Porous Media: Pore Space Partitioning Based on Morphological Skeletonization. , 2000, Journal of colloid and interface science.

[25]  C Bathias,et al.  LA FATIGUE DES MATERIAUX ET DES STRUCTURES , 1980 .