Three-Dimensional Laser Radar Recognition Approaches

Three-dimensional laser radars measure the geometric shape of objects. The shape of an object is a geometric quality that is more intuitively understood than intensity-based sensors, and consequently laser radars are easier to interpret. While the shape contains more salient (and less variable) information, the computational difficulties are similar to those of other common sensor systems. A discussion of common approaches to 3D object recognition, and the technical issues (called operating conditions), are presented. A novel method that provides a straightforward approach to handling articulating object components and multiscale decomposition of complex objects is also presented. Invariants (or more precisely covariants) are a key element of this method. The presented approach is appealing since detection and segmentation processes need not be done beforehand, the object recognition system is robust to articulation and obscuration, and it is conducive to incorporating shape metrics.

[1]  Bir Bhanu,et al.  CAD-Based 3D Object Representation for Robot Vision , 1987, Computer.

[2]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[3]  Isaac Weiss,et al.  Model-Based Recognition of 3D Objects from One View , 1998, ECCV.

[4]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[5]  Daphna Weinshall,et al.  Distance metric between 3D models and 2D images for recognition and classification , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Jun Zhang,et al.  Shape space object recognition , 2001 .

[7]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[9]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[10]  K. Sturtz,et al.  Complexity analysis of ATR algorithms based on invariants , 2000, Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640).

[11]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[12]  Ramakant Nevatia,et al.  Recognizing 3-D Objects Using Surface Descriptions , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jake K. Aggarwal,et al.  Model-based object recognition in dense-range images—a review , 1993, CSUR.

[14]  Mark A. Stuff Three-dimensional invariants of moving targets , 2000, SPIE Defense + Commercial Sensing.

[15]  Lee C. Potter,et al.  Model-based classification of radar images , 2000, IEEE Trans. Inf. Theory.

[16]  Peter F. Stiller General approaches to recognizing geometric configurations from a single view , 1997, Optics & Photonics.

[17]  F. Dehne,et al.  Hypercube algorithms for parallel processing of pointer-based quadtrees , 1995 .

[18]  Isaac Weiss Noise-Resistant Invariants of Curves , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[20]  D. Huttenlocher,et al.  Affine Matching With Bounded Sensor Error: Study of Geometric Hashing and Alignment , 1991 .

[21]  Bir Bhanu,et al.  Recognition of Articulated and Occluded Objects , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Z. Li,et al.  A fast expected time algorithm for the 2-D point pattern matching problem , 2004, Pattern Recognit..

[23]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[24]  Patrick J. Flynn,et al.  A Survey Of Free-Form Object Representation and Recognition Techniques , 2001, Comput. Vis. Image Underst..

[25]  David G. Lowe,et al.  Probabilistic Models of Appearance for 3-D Object Recognition , 2000, International Journal of Computer Vision.

[26]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[27]  Dominick A. Giglio Algorithms for Synthetic Aperture Radar Imagery , 1994 .

[28]  W. Eric L. Grimson,et al.  Probabilistic optimization approach to SAR feature matching , 1996, Defense, Security, and Sensing.

[29]  Robert A. Melter,et al.  Vision Geometry , 1992 .

[30]  C. Small The statistical theory of shape , 1996 .

[31]  Hon-Son Don,et al.  3-D Moment Forms: Their Construction and Application to Object Identification and Positioning , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[33]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[35]  David G. Stork,et al.  Pattern Classification , 1973 .

[36]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[37]  David Mumford,et al.  Mathematical theories of shape: do they model perception? , 1991, Optics & Photonics.

[38]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[39]  Timothy D. Ross,et al.  SAR ATR: so what's the problem? An MSTAR perspective , 1999, Defense, Security, and Sensing.

[40]  A. Jelalian Laser radar systems , 1980 .

[41]  Mark A. Stuff Three-dimensional analysis of moving target radar signals: methods and implications for ATR and feature-aided tracking , 1999, Defense, Security, and Sensing.

[42]  S. Lele,et al.  An Invariant Approach to Statistical Analysis of Shapes , 2001 .

[43]  Jan Flusser,et al.  Moment Forms Invariant to Rotation and Blur in Arbitrary Number of Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Azriel Rosenfeld,et al.  Model-based 3d object recognition using invariants , 2000 .

[45]  Gregory Arnold,et al.  Label-invariant approach to procrustes analysis , 2002, SPIE Defense + Commercial Sensing.

[46]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[47]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[48]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Ehud Rivlin,et al.  Local Invariants For Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Peter F. Stiller,et al.  Single-view recognition: the perspective case , 1996, Optics & Photonics.

[52]  João Paulo Costeira,et al.  A Global Solution to Sparse Correspondence Problems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Bernt Schiele,et al.  3D object recognition from range images using local feature histograms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[54]  Shimon Ullman,et al.  Limitations of Non Model-Based Recognition Schemes , 1992, ECCV.

[55]  Milan Sonka,et al.  Image processing analysis and machine vision [2nd ed.] , 1999 .

[56]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[57]  Michael S. Landy,et al.  A Statistical Viewpoint on the Theory of Evidence , 1986, IEEE Trans. Pattern Anal. Mach. Intell..