The Potential for Mixed Mating in a Self‐Incompatible Plant

A previous study showed that flowers of Campanula rapunculoides (Campanulaceae) are strongly self‐incompatible when the stigma first becomes receptive but are less strongly self‐incompatible as the flowers age. We deposited equivalent loads of self and outcross pollen onto either 1‐d‐old or 4‐d‐old stigmas and examined seed paternity using the PGI (phospho‐gluco‐isomerase) genetic locus. Pollen mixtures (50:50) on young flowers yielded only outcross progeny, indicating functional self‐incompatibility. Pollinations on the older stigmas, however, resulted in progeny arrays that departed significantly (χ2 test, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.001$$ \end{document} ) from the expectations from pure outcrosssing, with self‐fertilizations estimated at 15%–22%, depending on the cross. The ability to produce both selfed and outcrossed progeny, i.e., mixed mating, coupled with a 6% increase in fruiting success of C. rapunculoides flowers pollinated shortly before floral senescence may provide an opportunity for reproductive assurance in natural populations of this species.

[1]  A. Stephenson,et al.  Phenotypic plasticity in the expression of self-incompatibility in Campanula rapunculoides , 1998, Heredity.

[2]  N. Ellstrand,et al.  Gene flow among small populations of a self-incompatible plant: an interaction between demography and genetics. , 1997, American journal of botany.

[3]  D. de Nettancourt,et al.  Incompatibility in angiosperms , 1977, Sexual Plant Reproduction.

[4]  M. Villar,et al.  Mentor effects in pistil-mediated pollen-pollen interactions. , 1997 .

[5]  T. Bataillon,et al.  How Does Self-Pollination Evolve? Inferences from Floral Ecology and Molecular Genetic Variation , 1996 .

[6]  D. Levin The Evolutionary Significance of Pseudo-Self-Fertility , 1996, The American Naturalist.

[7]  A. Snow,et al.  The Ecology of Geitonogamous Pollination , 1996 .

[8]  Y. Nyman The pollen‐collecting hairs of Campanula (Campanulaceae). II. Function and adaptive significance in relation to pollination , 1993 .

[9]  Y. Nyman The pollen‐collecting hairs of Campanula (Campanulaceae). I. Morphological variation and the retractive mechanism , 1993 .

[10]  M. Anderson,et al.  S-RNase gene of Nicotiana alata is expressed in developing pollen. , 1993, The Plant cell.

[11]  G. Vaughton,et al.  Evidence for selective fruit abortion in Banksia spinulosa (Proteaceae) , 1993 .

[12]  D. G. Lloyd,et al.  Self- and Cross-Fertilization in Plants. I. Functional Dimensions , 1992, International Journal of Plant Sciences.

[13]  D. G. Lloyd,et al.  COMPETITION‐DEPENDENT ABSCISSION OF SELF‐POLLINATED FLOWERS OF PHORMIUM TENAX (AGAVACEAE): A SECOND ACTION OF SELF‐INCOMPATIBILITY AT THE WHOLE FLOWER LEVEL? , 1992, Evolution; international journal of organic evolution.

[14]  T. Kao,et al.  Effects of Style Age on the Performance of Self and Cross Pollen in Campanula rapunculoides , 1992 .

[15]  A. Brown,et al.  WHOLE‐ AND PART‐FLOWER SELF‐POLLINATION IN GLYCINE CLANDESTINA AND G. ARGYREA AND THE EVOLUTION OF AUTOGAMY , 1991, Evolution; international journal of organic evolution.

[16]  M. V. Price,et al.  Reproductive costs of self-pollination in Ipomopsis aggregata (Polemoniaceae) : are ovules usurped ? , 1991 .

[17]  T. Kao,et al.  Preliminary studies into age-dependent breakdown of self-incompatibility in Campanula rapunculoides: seed set, pollen tube growth, and molecular data. , 1990 .

[18]  L. F. Galloway,et al.  COSTS OF SELF‐POLLINATION IN A SELF‐INCOMPATIBLE PLANT, POLEMONIUM VISCOSUM , 1989 .

[19]  A. Stephenson,et al.  POLLEN REMOVAL AND POLLEN DEPOSITION AFFECT THE DURATION OF THE STAMINATE AND PISTILLATE PHASES IN CAMPANULA RAPUNCULOIDES , 1989 .

[20]  R. Bertin,et al.  POLLEN INTERFERENCE AND CRYPTIC SELF‐FERTILITY IN CAMPSIS RADICANS , 1988 .

[21]  R. Bowman CRYPTIC SELF‐INCOMPATIBILITY AND THE BREEDING SYSTEM OF CLARKIA UNGUICULATA (ONAGRACEAE) , 1987 .

[22]  C. Dumas,et al.  Mentor Pollen Techniques , 1987 .

[23]  A. Stephenson,et al.  LOTUS CORNICULATUS REGULATES OFFSPRING QUALITY THROUGH SELECTIVE FRUIT ABORTION , 1986, Evolution; international journal of organic evolution.

[24]  T. J. Rosatti The genera of Sphenocleaceae and Campanulaceae in the southeastern United States , 1986 .

[25]  S. Barrett,et al.  The effect of pollination intensity and incompatible pollen on seed set in Turnera ulmifolia (Turneraceae) , 1984 .

[26]  A. Stephenson Flower and Fruit Abortion: Proximate Causes and Ultimate Functions , 1981 .

[27]  B. Charlesworth,et al.  The evolution and breakdown of S-allele systems , 1979, Heredity.

[28]  M. Nasrallah Genetic control of quantitative variation in self-incompatibility proteins detected by immunodiffusion. , 1974, Genetics.

[29]  F. Dane,et al.  Effect of Temperature on Self- and Cross-Compatibility and In Vitro Pollen Growth Characteristics in Alfalfa 1 , 1973 .

[30]  S. J. Peloquin,et al.  EFFECT OF FLORAL AGING ON THE GROWTH OF COMPATIBLE AND INCOMPATIBLE POLLEN TUBES IN LILIUM LONGIFLORUM , 1966 .

[31]  A. Bateman Cryptic self-incompatibility in the wallflower: Cheiranthus cheiri L. , 1956, Heredity.