Computing Abelian Covers and Abelian Runs
暂无分享,去创建一个
[1] P. Erdos. Some unsolved problems. , 1957 .
[2] Zsuzsanna Lipták,et al. On Table Arrangements, Scrabble Freaks, and Jumbled Pattern Matching , 2010, FUN.
[3] P. Pleasants. Non-repetitive sequences , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Gregory Kucherov,et al. Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[5] Gad M. Landau,et al. Binary Jumbled Pattern Matching on Trees and Tree-Like Structures , 2013, ESA.
[6] Veikko Keränen,et al. Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.
[7] Rohit Parikh,et al. On Context-Free Languages , 1966, JACM.
[8] Mohammad Sohel Rahman,et al. Indexing permutations for binary strings , 2010, Inf. Process. Lett..
[9] R. C. ENTRINGER,et al. On Nonrepetitive Sequences , 1974, J. Comb. Theory, Ser. A.
[10] Yin Li,et al. Computing the Cover Array in Linear Time , 2001, Algorithmica.
[11] Arnaud Lefebvre,et al. Computing Abelian Periods in Words , 2011, Stringology.
[12] Moshe Lewenstein,et al. On Hardness of Jumbled Indexing , 2014, ICALP.
[13] Wojciech Rytter,et al. Fast Algorithms for Abelian Periods in Words and Greatest Common Divisor Queries , 2013, STACS.
[14] Gad M. Landau,et al. Binary Jumbled Pattern Matching via All-Pairs Shortest Paths , 2014, ArXiv.
[15] Wojciech Rytter,et al. Efficient Indexes for Jumbled Pattern Matching with Constant-Sized Alphabet , 2013, ESA.
[16] William F. Smyth,et al. Weak repetitions in strings , 1997 .
[17] Wojciech Rytter,et al. A note on efficient computation of all Abelian periods in a string , 2013, Inf. Process. Lett..
[18] Arnaud Lefebvre,et al. Quasi-linear Time Computation of the Abelian Periods of a Word , 2012, Stringology.