Hybrid opto-electric manipulation in microfluidics-opportunities and challenges.

Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of methodologies employing optical modulation of electrokinetic schemes to achieve particle or fluid manipulation at the micro- and nano-scale. Over the last decade, a set of methodologies, which differ in their modulation strategy and/or the length scale of operation, have emerged. These techniques offer new opportunities with their dynamic nature, and their ability for parallel operation has created novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimetre-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various hybrid opto-electric techniques that have emerged over the last decade under a unified umbrella.

[1]  M.C. Wu,et al.  Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  L. Lue,et al.  The role of image charges in the interactions between colloidal particles. , 2008, Soft matter.

[3]  S. Cho,et al.  Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[4]  John L. Anderson,et al.  Particle Clustering and Pattern Formation during Electrophoretic Deposition: A Hydrodynamic Model , 1997 .

[5]  S. Fan,et al.  Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. , 2008, Lab on a chip.

[6]  Joachim O Rädler,et al.  Light-induced dielectrophoretic manipulation of DNA. , 2007, Biophysical journal.

[7]  Jaebum Choo,et al.  Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering. , 2010, Analytical chemistry.

[8]  Michael A. Teitell,et al.  Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium. , 2008, Applied physics letters.

[9]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[10]  R. Fair,et al.  Droplet-based microfluidic lab-on-a-chip for glucose detection , 2004 .

[11]  G. Fuhr,et al.  High-frequency electric field trapping of individual human spermatozoa. , 1998, Human reproduction.

[12]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[13]  Stuart J. Williams,et al.  Electrokinetic patterning of colloidal particles with optical landscapes. , 2008, Lab on a chip.

[14]  G. Schwarz A THEORY OF THE LOW-FREQUENCY DIELECTRIC DISPERSION OF COLLOIDAL PARTICLES IN ELECTROLYTE SOLUTION1,2 , 1962 .

[15]  M. Bohmer In Situ Observation of 2-Dimensional Clustering during Electrophoretic Deposition , 1996 .

[16]  M. A. Bevan,et al.  Aggregation Dynamics for Two Particles during Electrophoretic Deposition under Steady Fields , 2000 .

[17]  Do-Hyun Lee,et al.  Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. , 2009, Biomicrofluidics.

[18]  D A Saville,et al.  Electrically guided assembly of planar superlattices in binary colloidal suspensions. , 2003, Physical review letters.

[19]  Cheng-Hsien Liu,et al.  Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. , 2010, Optics letters.

[20]  M.C. Wu,et al.  Dynamic Cell and Microparticle Control via Optoelectronic Tweezers , 2007, Journal of Microelectromechanical Systems.

[21]  Hsan-Yin Hsu,et al.  Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. , 2009, Lab on a chip.

[22]  M.C. Wu,et al.  Droplet Manipulation With Light on Optoelectrowetting Device , 2008, Journal of Microelectromechanical Systems.

[23]  Hywel Morgan,et al.  Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results , 1999 .

[24]  Ilhan A. Aksay,et al.  Assembly of Colloidal Crystals at Electrode Interfaces , 1997 .

[25]  Amit Kumar Srivastava,et al.  Generalized model for time periodic electroosmotic flows with overlapping electrical double layers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[27]  Jae-Sung Kwon,et al.  Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[28]  Vanessa Brisson,et al.  Self-assembly and two-dimensional patterning of cell arrays by electrophoretic deposition. , 2002, Biotechnology and bioengineering.

[29]  Stuart J. Williams,et al.  Optically induced electrokinetic patterning and manipulation of particles , 2008, 0809.4083.

[30]  Hyundoo Hwang,et al.  Rapid and selective concentration of microparticles in an optoelectrofluidic platform. , 2009, Lab on a chip.

[31]  Hyundoo Hwang,et al.  Experimental investigation of electrostatic particle-particle interactions in optoelectronic tweezers. , 2008, The journal of physical chemistry. B.

[32]  Jeng-Hua Wei,et al.  Electrical and optical properties of implanted amorphous silicon , 1994 .

[33]  S. Bhattacharjee,et al.  Electrostatic double layer force between a sphere and a planar substrate in the presence of previously deposited spherical particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[34]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[35]  Christoph A. Merten,et al.  Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. , 2008, Chemistry & biology.

[36]  Hyundoo Hwang,et al.  Generation and manipulation of droplets in an optoelectrofluidic device integrated with microfluidic channels , 2009 .

[37]  Je-Kyun Park,et al.  Optoelectrofluidic platforms for chemistry and biology. , 2011, Lab on a chip.

[38]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[39]  Chester T. O'Konski,et al.  ELECTRIC PROPERTIES OF MACROMOLECULES. V. THEORY OF IONIC POLARIZATION IN POLYELECTROLYTES , 1960 .

[40]  D. Saville,et al.  Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current. , 2007, Langmuir.

[41]  Sung Kwon Cho,et al.  Concentration and binary separation of micro particles for droplet-based digital microfluidics. , 2007, Lab on a chip.

[42]  Johannes Lyklema,et al.  Fundamentals of Interface and Colloid Science , 1991 .

[43]  Aaron R Wheeler,et al.  Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. , 2004, Analytical chemistry.

[44]  D. A. Saville,et al.  Field-Induced Layering of Colloidal Crystals , 1996, Science.

[45]  Phil Paik,et al.  Electrowetting-based droplet mixers for microfluidic systems. , 2003, Lab on a chip.

[46]  Jeong‐Yeol Yoon,et al.  Preventing Biomolecular Adsorption in Electrowetting-Based Biofluidic Chips. , 2003, Analytical chemistry.

[47]  Sonia Grego,et al.  An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[48]  Sheraz Kalim,et al.  A light-induced dielectrophoretic droplet manipulation platform. , 2009, Lab on a chip.

[49]  Christoph A. Merten,et al.  Drop-based microfluidic devices for encapsulation of single cells. , 2008, Lab on a chip.

[50]  Eric P. Y. Chiou,et al.  EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. , 2009, Lab on a chip.

[51]  Steven L Neale,et al.  NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles. , 2009, Nano letters.

[52]  安達 定雄,et al.  Optical properties of crystalline and amorphous semiconductors : materials and fundamental principles , 1999 .

[53]  Meng Lian,et al.  Ultrafast micropumping by biased alternating current electrokinetics , 2009 .

[54]  D. Marr,et al.  Photon-directed colloidal crystallization , 2004 .

[55]  Jin Jang,et al.  Reduction of nonspecific surface-particle interactions in optoelectronic tweezers , 2008 .

[56]  J. Fagan,et al.  Evidence of multiple electrohydrodynamic forces acting on a colloidal particle near an electrode due to an alternating current electric field. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[57]  R. Fair,et al.  Electrowetting-based actuation of droplets for integrated microfluidics. , 2002, Lab on a chip.

[58]  H. Morgan,et al.  Electric field induced fluid flow on microelectrodes : the effect of illumination , 2000 .

[59]  Steven L Neale,et al.  Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media. , 2010, Lab on a chip.

[60]  J. Prost,et al.  Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres , 1984 .

[61]  J. Fagan,et al.  Vertical Oscillatory Motion of a Single Colloidal Particle Adjacent to an Electrode in an ac Electric Field , 2002 .

[62]  H. Morgan,et al.  Electrothermally induced fluid flow on microelectrodes , 2001 .

[63]  J. Maczuk,et al.  ON THE LOW-FREQUENCY DIELECTRIC DISPERSION OF COLLOIDAL PARTICLES IN ELECTROLYTE SOLUTION1 , 1962 .

[64]  Castellanos,et al.  AC Electric-Field-Induced Fluid Flow in Microelectrodes. , 1999, Journal of colloid and interface science.

[65]  M.C. Wu,et al.  Phototransistor-Based Optoelectronic Tweezers for Cell Manipulation in Highly Conductive Solution , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[66]  D. A. Saville,et al.  Electrophoretic assembly of colloidal crystals with optically tunable micropatterns , 2000, Nature.

[67]  Michael Seul,et al.  Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow , 1997, Nature.

[68]  M. Fixman Thin double layer approximation for electrophoresis and dielectric response , 1983 .

[69]  S. Adachi Optical Properties of Crystalline and Amorphous Semiconductors , 1999 .

[70]  A. Baranov,et al.  Lab-in-a-drop: controlled self-assembly of CdSe/ZnS quantum dots and quantum rods into polycrystalline nanostructures with desired optical properties , 2007 .

[71]  Steven L Neale,et al.  Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. , 2010, Lab on a chip.

[72]  Christian J. Kähler,et al.  3D3C velocimetry measurements of an electrothermal microvortex using wavefront deformation PTV and a single camera , 2011 .

[73]  Gwo-Bin Lee,et al.  Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces , 2010 .

[74]  Mathieu Allard,et al.  In situ study of colloid crystallization in constrained geometry. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[75]  Jin Jang,et al.  Interactive manipulation of blood cells using a lens‐integrated liquid crystal display based optoelectronic tweezers system , 2008, Electrophoresis.

[76]  Seong-Won Nam,et al.  Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image , 2008 .

[77]  Christian J. Kähler,et al.  A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics , 2010 .

[78]  Todd M Squires,et al.  Induced-charge electrokinetics: fundamental challenges and opportunities. , 2009, Lab on a chip.

[79]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Saville,et al.  Assembly of colloidal aggregates by electrohydrodynamic flow: Kinetic experiments and scaling analysis. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  M.C. Wu,et al.  Operational Regimes and Physics Present in Optoelectronic Tweezers , 2008, Journal of Microelectromechanical Systems.

[82]  O. Park,et al.  The fabrication of micropatterns of a 2D colloidal assembly by electrophoretic deposition , 2006 .

[83]  M. Bazant,et al.  Induced-charge electrokinetic phenomena: theory and microfluidic applications. , 2003, Physical review letters.

[84]  Hsan-Yin Hsu,et al.  Antifouling coatings for optoelectronic tweezers. , 2009, Lab on a chip.

[85]  S. Dukhin,et al.  Non-equilibrium electric surface phenomena , 1993 .

[86]  M.C. Wu,et al.  Light-Actuated AC Electroosmosis for Nanoparticle Manipulation , 2008, Journal of Microelectromechanical Systems.

[87]  Han-Sheng Chuang,et al.  Dynamic manipulation by light and electric fields: micrometer particles to microliter droplets. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[88]  Jin Jang,et al.  Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD) , 2007 .

[89]  H. Stone,et al.  Influence of substrate conductivity on circulation reversal in evaporating drops. , 2007, Physical review letters.

[90]  Ilhan A. Aksay,et al.  Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential , 2007, Journal of Fluid Mechanics.

[91]  T. Laurell,et al.  Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. , 2007, Analytical chemistry.

[92]  M. Lian,et al.  AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. , 2007, IET nanobiotechnology.

[93]  Yi Zhang,et al.  Clockwork PCR including sample preparation. , 2008, Angewandte Chemie.

[94]  Steven T. Wereley,et al.  Open optoelectrowetting droplet actuation , 2008 .

[95]  Steven T. Wereley,et al.  Experiments on opto-electrically generated microfluidic vortices , 2009 .

[96]  Steven T. Wereley,et al.  Optically induced electrokinetic concentration and sorting of colloids , 2009 .

[97]  Jong Wook Hong,et al.  Integrated nanoliter systems , 2003, Nature Biotechnology.

[98]  D. Saville,et al.  Electrohydrodynamic flow and colloidal patterning near inhomogeneities on electrodes. , 2008, Langmuir.

[99]  Hiroshi Toshiyoshi,et al.  Light actuation of liquid by optoelectrowetting , 2003 .

[100]  Stuart J. Williams,et al.  A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles. , 2009, Nanoscale.

[101]  A. Ajdari,et al.  Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  J. Michael Schurr On the Theory of the Dielectric Dispersion of Spherical Colloidal Particles in Electrolyte Solution1 , 1964 .

[103]  J. Fagan,et al.  Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[104]  Joonwon Kim,et al.  Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system , 2005 .

[105]  Chengkuo Lee,et al.  Controllability of Non-Contact Cell Manipulation by Image Dielectrophoresis (iDEP) , 2005 .

[106]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.