Emerging Polyhydroxyurethanes as Sustainable Thermosets: A Structure–Property Relationship

[1]  C. Detrembleur,et al.  Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams. , 2022, Angewandte Chemie.

[2]  Yanning Zeng,et al.  Fully rosin-based epoxy vitrimers with high mechanical and thermostability properties, thermo-healing and closed-loop recycling , 2022, European Polymer Journal.

[3]  V. Ladmiral,et al.  Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions? , 2022, Macromolecules.

[4]  C. Detrembleur,et al.  Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. , 2022, ACS macro letters.

[5]  L. Avérous,et al.  Biobased vitrimers: towards sustainable and adaptable performing polymer materials , 2022, Progress in Polymer Science.

[6]  Xian Jun Loh,et al.  Vitrimers: Current research trends and their emerging applications , 2021, Materials Today.

[7]  Xinxin Yang,et al.  Fully Bio-Based Polyhydroxyurethanes with a Dynamic Network from a Terpene Derivative and Cyclic Carbonate Functional Soybean Oil , 2021 .

[8]  A. Graillot,et al.  Recyclable, Repairable, and Reshapable (3R) Thermoset Materials with Shape Memory Properties from Bio-Based Epoxidized Vegetable Oils. , 2020, ACS applied bio materials.

[9]  Jian-Bing Zeng,et al.  Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin , 2020 .

[10]  Jianqing Zhao,et al.  Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances , 2020 .

[11]  S. Caillol,et al.  Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties? , 2020, European Polymer Journal.

[12]  N. Karak,et al.  Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers , 2020, Chemical Engineering Journal.

[13]  Y. Qiu,et al.  Vanillin-Based Epoxy Vitrimer with High Performance and Closed-Loop Recyclability , 2020 .

[14]  S. Caillol,et al.  From multi-functional siloxane-based cyclic carbonates to hybrid polyhydroxyurethane thermosets , 2019, European Polymer Journal.

[15]  L. Avérous,et al.  From the Synthesis of Biobased Cyclic Carbonate to Polyhydroxyurethanes: A Promising Route towards Renewable Non-Isocyanate Polyurethanes. , 2019, ChemSusChem.

[16]  J. Torkelson,et al.  Biobased Reprocessable Polyhydroxyurethane Networks: Full Recovery of Crosslink Density with Three Concurrent Dynamic Chemistries , 2019, ACS Sustainable Chemistry & Engineering.

[17]  William R. Dichtel,et al.  Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. , 2019, The journal of physical chemistry. B.

[18]  D. Venerus,et al.  Reprocessable Polyhydroxyurethane Network Composites: Effect of Filler Surface Functionality on Cross-link Density Recovery and Stress Relaxation. , 2018, ACS applied materials & interfaces.

[19]  William R. Dichtel,et al.  Rapidly Reprocessable Cross-Linked Polyhydroxyurethanes Based on Disulfide Exchange. , 2018, ACS macro letters.

[20]  William R. Dichtel,et al.  Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers , 2018 .

[21]  R. Wischert,et al.  Synthesis of Renewable meta ‐Xylylenediamine from Biomass‐Derived Furfural , 2018, Angewandte Chemie.

[22]  S. Caillol,et al.  Hydrogen bonds prevent obtaining high molar mass PHUs , 2017 .

[23]  William R. Dichtel,et al.  Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes , 2017 .

[24]  Jinsong Leng,et al.  Stimulus methods of multi-functional shape memory polymer nanocomposites: A review , 2017 .

[25]  R. Mülhaupt,et al.  Liquid sorbitol ether carbonate as intermediate for rigid and segmented non-isocyanate polyhydroxyurethane thermosets , 2017 .

[26]  S. Caillol,et al.  A perspective approach to sustainable routes for non-isocyanate polyurethanes , 2017 .

[27]  R. Mülhaupt,et al.  High Purity Limonene Dicarbonate as Versatile Building Block for Sustainable Non-Isocyanate Polyhydroxyurethane Thermosets and Thermoplastics , 2017 .

[28]  S. Caillol,et al.  Bio-Based Aromatic Epoxy Monomers for Thermoset Materials , 2017, Molecules.

[29]  S. Caillol,et al.  Promising mechanical and adhesive properties of isocyanate-free poly(hydroxyurethane) , 2016 .

[30]  William H. Heath,et al.  Nonisocyanate Thermoplastic Polyhydroxyurethane Elastomers via Cyclic Carbonate Aminolysis: Critical Role of Hydroxyl Groups in Controlling Nanophase Separation. , 2016, ACS macro letters.

[31]  P. Dubois,et al.  Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines To Achieve Thermosets or Thermoplastics , 2016 .

[32]  M. T. Paridah,et al.  A review on dynamic mechanical properties of natural fibre reinforced polymer composites , 2016 .

[33]  É. Grau,et al.  Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s. , 2015, Chemical reviews.

[34]  J. Pascault,et al.  How to explain low molar masses in PolyHydroxyUrethanes (PHUs) , 2015 .

[35]  M. Hillmyer,et al.  Polylactide Vitrimers. , 2014, ACS macro letters.

[36]  R. Mülhaupt,et al.  Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. , 2014, Macromolecular rapid communications.

[37]  S. Caillol,et al.  Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes , 2014 .

[38]  R. Mülhaupt,et al.  Glycerol-, pentaerythritol- and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation , 2013 .

[39]  J. Pascault,et al.  On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. , 2013, Chemical reviews.

[40]  R. Mülhaupt,et al.  Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion , 2012 .

[41]  Ludwik Leibler,et al.  Silica-Like Malleable Materials from Permanent Organic Networks , 2011, Science.

[42]  P. Dubois,et al.  MALDI-ToF analysis of polythiophene: use of trans-2-[3-(4-t-butyl-phenyl)-2-methyl- 2-propenylidene]malononitrile-DCTB-as matrix. , 2011, Journal of mass spectrometry : JMS.

[43]  Patricia Krawczak,et al.  Thermosetting (bio)materials derived from renewable resources: A critical review , 2010 .

[44]  S. P. Abuín,et al.  Epoxidation reaction of trimethylolpropane with epichlorohydrin: Kinetic study of chlorohydrin formation , 1996 .

[45]  Paul M. Weaver,et al.  Green composites: A review of material attributes and complementary applications , 2014 .

[46]  H. Woelk Stärke als Chemierohstoff — Möglichkeiten und Grenzen , 1981 .