Recent advances in transformation optics.

Within the past a few years, transformation optics has emerged as a new research area, since it provides a general methodology and design tool for manipulating electromagnetic waves in a prescribed manner. Using transformation optics, researchers have demonstrated a host of striking phenomena and devices; many of which were only thought possible in science fiction. In this paper, we review the most recent advances in transformation optics. We focus on the theory, design, fabrication and characterization of transformation devices such as the carpet cloak, "Janus" lens and plasmonic cloak at optical frequencies, which allow routing light at the nanoscale. We also provide an outlook of the challenges and future directions in this fascinating area of transformation optics.

[1]  A. Kildishev,et al.  Engineering space for light via transformation optics. , 2007, Optics letters.

[2]  D. Werner,et al.  Transformation optical designs for wave collimators, flat lenses and right-angle bends , 2008 .

[3]  David R. Smith,et al.  Metamaterials: Theory, Design, and Applications , 2009 .

[4]  T. Tyc,et al.  Broadband Invisibility by Non-Euclidean Cloaking , 2009, Science.

[5]  Huanyang Chen,et al.  Transformation media that rotate electromagnetic fields , 2007, physics/0702050.

[6]  M. Wegener,et al.  Shaping optical space with metamaterials , 2010 .

[7]  David R. Smith,et al.  Partial focusing of radiation by a slab of indefinite media , 2004 .

[8]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[9]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[10]  Xudong Luo,et al.  Conceal an entrance by means of superscatterer , 2008, 0809.1823.

[11]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[12]  Vadim V. Cheianov,et al.  Junctions p-n The Focusing of Electron Flow and a Veselago Lens in Graphene , 2011 .

[13]  Martin Wegener,et al.  Experiments on elastic cloaking in thin plates. , 2012, Physical review letters.

[14]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[15]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[16]  Mankei Tsang,et al.  Magnifying perfect lens and superlens design by coordinate transformation , 2007, 0708.0262.

[17]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[18]  Alberto Favaro,et al.  A Spacetime Cloak , or a History , 2012 .

[19]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[20]  Analytic design of graded photonic crystals in the metamaterial regime , 2011 .

[21]  Jensen Li,et al.  Scaling two-dimensional photonic crystals for transformation optics. , 2011, Optics express.

[22]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[23]  T. Cui,et al.  Arbitrary bending of electromagnetic waves using isotropic materials , 2009 .

[24]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[25]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[26]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[27]  David R. Smith,et al.  Scattering theory derivation of a 3D acoustic cloaking shell. , 2008, Physical review letters.

[28]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[29]  Chunguang Xia,et al.  Broadband acoustic cloak for ultrasound waves. , 2010, Physical review letters.

[30]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[31]  李超,et al.  Experimental Realization of a Circuit-Based Broadband Illusion-Optics Analogue , 2010 .

[32]  Xiang Zhang,et al.  Subwavelength discrete solitons in nonlinear metamaterials. , 2007, Physical review letters.

[33]  S. Guenneau,et al.  Broadband cylindrical acoustic cloak for linear surface waves in a fluid. , 2008, Physical review letters.

[34]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[35]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[36]  Huanyang Chen,et al.  The anti-cloak. , 2008, Optics express.

[37]  Carsten Rockstuhl,et al.  Designing optical elements from isotropic materials by using transformation optics , 2010 .

[38]  David R. Smith,et al.  Planar, flattened Luneburg lens at infrared wavelengths. , 2012, Optics express.

[39]  J. Pendry,et al.  Collection and concentration of light by touching spheres: a transformation optics approach. , 2010, Physical review letters.

[40]  Y. Kivshar,et al.  Nonlinear properties of left-handed metamaterials. , 2003, Physical review letters.

[41]  Gennady Shvets,et al.  Phase conjugation and negative refraction using nonlinear active metamaterials. , 2010, Physical review letters.

[42]  Baile Zhang,et al.  Lateral shift makes a ground-plane cloak detectable. , 2010, Physical review letters.

[43]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[44]  G. Kim,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy , 2013 .

[45]  Martin Wegener,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited] , 2011, 1105.5703.

[46]  F. J. Garcia-Vidal,et al.  Edge and waveguide terahertz surface plasmon modes in graphene microribbons , 2011, 1107.5787.

[47]  J. Huangfu,et al.  Application of coordinate transformation in bent waveguides , 2008 .

[48]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[49]  T. Cui,et al.  An omnidirectional electromagnetic absorber made of metamaterials , 2010 .

[50]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[51]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[52]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[53]  N. Engheta,et al.  Multifrequency optical invisibility cloak with layered plasmonic shells. , 2008, Physical review letters.

[54]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[55]  J. Lee,et al.  Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. , 2009, Optics express.

[56]  Wei Cao,et al.  Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak , 2011, Scientific reports.

[57]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[58]  M. Qiu,et al.  Cylindrical invisibility cloak with simplified material parameters is inherently visible. , 2007, Physical review letters.

[59]  T. Tyc,et al.  An omnidirectional retroreflector based on the transmutation of dielectric singularities. , 2009, Nature materials.

[60]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[61]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[62]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[63]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[64]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[65]  D. Tsai,et al.  Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation , 2012, Nature Communications.

[66]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[67]  Shuang Zhang,et al.  Robust large dimension terahertz cloaking. , 2012, Advanced materials.

[68]  Huanyang Chen,et al.  Electromagnetic wave manipulation by layered systems using the transformation media concept , 2008 .

[69]  U. Leonhardt,et al.  Luneburg lens in silicon photonics. , 2011, Optics express.

[70]  J. Fischer,et al.  Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. , 2011, Optics letters.

[71]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[72]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[73]  Yuri S. Kivshar,et al.  Magnetoelastic metamaterials , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[74]  R. Baughman,et al.  Linear and nonlinear wave propagation in negative refraction metamaterials , 2003 .

[75]  Stefan A. Maier,et al.  Conformal transformation applied to plasmonics beyond the quasistatic limit , 2010 .

[76]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[77]  Jin Au Kong,et al.  Extraordinary surface voltage effect in the invisibility cloak with an active device inside. , 2007, Physical review letters.

[78]  X. Zhang,et al.  An Optical “Janus” Device for Integrated Photonics , 2010, Advanced materials.

[79]  Baile Zhang,et al.  Electromagnetic detection of a perfect invisibility cloak. , 2009, Physical review letters.

[80]  J. Fischer,et al.  Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak. , 2011, Physical review letters.

[81]  D. Miller,et al.  On perfect cloaking. , 2006, Optics express.

[82]  Nikolay I. Zheludev,et al.  Metamaterial with negative index due to chirality , 2009 .

[83]  Y. Wang,et al.  Flying plasmonic lens in the near field for high-speed nanolithography. , 2008, Nature nanotechnology.

[84]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[85]  Steven G. Johnson,et al.  Delay-bandwidth and delay-loss limitations for cloaking of large objects. , 2010, Physical review letters.

[86]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[87]  Douglas H. Werner,et al.  Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission , 2011 .

[88]  Huanyang Chen,et al.  Superscatterer: enhancement of scattering with complementary media. , 2008, Optics express.

[89]  Nader Engheta,et al.  Fourier Optics on Graphene , 2012 .

[90]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[91]  Andrea Alù,et al.  Erratum: Achieving transparency with plasmonic and metamaterial coatings [Phys. Rev. E, 72 , 016623 (2005)] , 2006 .

[92]  G. Barbastathis,et al.  Macroscopic invisibility cloak for visible light. , 2010, Physical review letters.

[93]  O. Lavrentovich,et al.  Electrically reconfigurable optical metamaterial based on colloidal dispersion of metal nanorods in dielectric fluid , 2009, 0912.1073.

[94]  Hongsheng Chen,et al.  One-Directional Perfect Cloak Created With Homogeneous Material , 2009 .

[95]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[96]  Vitor M. Pereira,et al.  Magnetism in strained graphene dots , 2009, 0909.4799.

[97]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[98]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[99]  D. Genov,et al.  Mimicking celestial mechanics in metamaterials , 2009 .

[100]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[101]  J. Pendry,et al.  Time Reversal and Negative Refraction , 2008, Science.

[102]  P. Piwnicki,et al.  Optics of nonuniformly moving media , 1999 .

[103]  Hongsheng Chen,et al.  Broadband polygonal invisibility cloak for visible light , 2012, Scientific Reports.

[104]  David R. Smith,et al.  Transformation-optical design of sharp waveguide bends and corners , 2008 .

[105]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[106]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[107]  D. Smith,et al.  Optical lens compression via transformation optics. , 2009, Optics express.

[108]  D Schurig,et al.  Transformation-designed optical elements. , 2007, Optics express.

[109]  U. Leonhardt New Journal of Physics The open–access journal for physics Notes on conformal invisibility devices , 2006 .

[110]  R. Gajić,et al.  Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. , 2010, Optics express.

[111]  Shuang Zhang,et al.  Cloaking of matter waves. , 2008, Physical review letters.

[112]  A. Lagarkov,et al.  Near-perfect imaging in a focusing system based on a left-handed-material plate. , 2004, Physical review letters.

[113]  Willie J Padilla,et al.  Guiding light with conformal transformations. , 2009, Optics express.

[114]  Rupert F. Oulton,et al.  Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities , 2007 .

[115]  David R. Smith,et al.  Transformation optics with photonic band gap media. , 2010, Physical review letters.

[116]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[117]  David R. Smith,et al.  Optical design of reflectionless complex media by finite embedded coordinate transformations. , 2007, Physical review letters.

[118]  Michal Lipson,et al.  Integrated Luneburg Lens via Ultra-strong Index Gradient on Silicon References and Links , 2022 .

[119]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[120]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[121]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[123]  Qiang Cheng,et al.  Illusion media: Generating virtual objects using realizable metamaterials , 2009, 0909.3619.

[124]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[125]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[126]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[127]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[128]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[129]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[130]  Kan Yao,et al.  Designing feasible optical devices via conformal mapping , 2011 .

[131]  Y. Kivshar,et al.  Tunable split-ring resonators for nonlinear negative-index metamaterials. , 2006, Optics express.

[132]  Jack Ng,et al.  Illusion optics: the optical transformation of an object into another object. , 2009, Physical review letters.

[133]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[134]  Shuang Zhang,et al.  Optical negative refraction by four-wave mixing in thin metallic nanostructures. , 2011, Nature materials.

[135]  M. Wegener,et al.  Self-consistent calculation of metamaterials with gain , 2009, 0907.0888.

[136]  Bin Liang,et al.  Acoustic cloaking by a superlens with single-negative materials. , 2011, Physical review letters.

[137]  S. Guenneau,et al.  Hidden progress: broadband plasmonic invisibility. , 2010, Optics express.

[138]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[139]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[140]  P. Luan,et al.  Cloaking of matter waves under the global Aharonov-Bohm effect , 2009 .

[141]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[142]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[143]  M. McCall,et al.  A spacetime cloak, or a history editor , 2011 .

[144]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[145]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[146]  M. Qiu,et al.  Cylindrical superlens by a coordinate transformation , 2008, 0804.2850.

[147]  Ortwin Hess,et al.  Overcoming losses with gain in a negative refractive index metamaterial. , 2010, Physical review letters.

[148]  Yanxia Cui,et al.  Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. , 2010, Nano letters.

[149]  Alexander L. Gaeta,et al.  Demonstration of Temporal Cloaking , 2011 .

[150]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[151]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[152]  U. Leonhardt,et al.  Transformation Optics and the Geometry of Light , 2008, 0805.4778.

[153]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[154]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[155]  G. Milton,et al.  Active exterior cloaking for the 2D Laplace and Helmholtz equations. , 2009, Physical review letters.

[156]  Mohamed Farhat,et al.  Ultrabroadband elastic cloaking in thin plates. , 2009, Physical review letters.

[157]  Andrea Alù,et al.  Bistable and self-tunable negative-index metamaterial at optical frequencies. , 2011, Physical review letters.

[158]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[159]  Hongsheng Chen,et al.  Electromagnetic wave interactions with a metamaterial cloak. , 2007, Physical review letters.

[160]  V. Shalaev Optical negative-index metamaterials , 2007 .

[161]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[162]  Matti Lassas,et al.  Approximate quantum cloaking and almost-trapped states. , 2008, Physical review letters.

[163]  Z. Dong,et al.  Beam-scanning planar lens based on graphene , 2012 .

[164]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[165]  Xiang Zhang,et al.  A carpet cloak for visible light. , 2011, Nano letters.

[166]  Jordan A. Katine,et al.  Magnetic recording at 1.5 Pb m −2 using an integrated plasmonic antenna , 2010 .

[167]  S. Anantha Ramakrishna,et al.  Focusing light using negative refraction , 2003 .

[168]  Huanyang Chen,et al.  Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. , 2008, Physical review letters.

[169]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[170]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[171]  Naomi J Halas,et al.  Plasmonics: an emerging field fostered by Nano Letters. , 2010, Nano letters.

[172]  Che Ting Chan,et al.  Transformation media for linear liquid surface waves , 2009 .

[173]  M. Fatih Erden,et al.  Heat Assisted Magnetic Recording , 2008, Proceedings of the IEEE.

[174]  T. Tyc,et al.  Non-Euclidean Cloaking for Light Waves , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[175]  David R. Smith,et al.  Controlling the second harmonic in a phase-matched negative-index metamaterial. , 2011, Physical review letters.

[176]  Douglas H. Werner,et al.  Conformal mappings to achieve simple material parameters for transformation optics devices. , 2010, Optics express.

[177]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[178]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[179]  Martin Wegener,et al.  Optical microscopy of 3D carpet cloaks:ray-tracing calculations. , 2010, Optics express.

[180]  David R. Smith,et al.  Fluid flow control with transformation media. , 2011, Physical review letters.

[181]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[182]  Vincent Fusco,et al.  Electromagnetic Metamaterials: Physics and Engineering Explorations (Engheta, N. and Ziolkowski, R.W.; 2006) [Book Review] , 2007, IEEE Antennas and Propagation Magazine.

[183]  Huanyang Chen,et al.  Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. , 2009, Physical review letters.