Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate

Mediterranean-type ecosystems (MTEs) are located today in southwestern Australia, the Cape Region of South Africa, the Mediterranean Basin, California, and central Chile. These MTEs possess the highest levels of plant species richness in the world outside of the wet tropics. These ecosystems include a variety of vegetation structures that range from the iconic mediterranean-type shrublands to deciduous and evergreen woodlands, evergreen forests, and herblands and grasslands. Sclerophyll vegetation similar to today's mediterranean-type shrublands was already present on oligotrophic soils in the wet and humid climate of the Cretaceous, with fire-adapted Paleogene lineages in southwestern Australia and the Cape Region. The novel mediterranean-type climate (MTC) seasonality present since the middle Miocene has allowed colonization of MTEs from a regional species pool with associated diversification. Fire persistence has been a primary driving factor for speciation in four of the five regions. Understanding th...

[1]  Tianhua He,et al.  Banksia born to burn. , 2011, The New phytologist.

[2]  F. Rodríguez‐Sánchez,et al.  Climate Change, Ecology and Systematics: Cenozoic climate changes and the demise of Tethyan laurel forests: lessons for the future from an integrative reconstruction of the past , 2011 .

[3]  R. Cowling,et al.  Explaining the uniqueness of the Cape flora: incorporating geomorphic evolution as a factor for explaining its diversification. , 2009, Molecular phylogenetics and evolution.

[4]  M. Arroyo,et al.  Analysis of the contribution and efficiency of the Santuario de la Naturaleza Yerba Loca, 33º S in protecting the regional vascular plant flora (Metropolitan and Fifth regions of Chile) , 2002 .

[5]  F. Ojeda Biogeography of seeder and resprouter Erica species in the Cape Floristic Region—Where are the resprouters? , 1998 .

[6]  P. Gioia,et al.  The Southwest Australian Floristic Region: Evolution and Conservation of a Global Hot Spot of Biodiversity , 2004 .

[7]  T. Stuessy,et al.  Phylogenetic relationships in Myrceugenia (Myrtaceae) based on plastid and nuclear DNA sequences , 2012, Molecular phylogenetics and evolution.

[8]  R. Ricklefs Evolutionary diversification and the origin of the diversity-environment relationship. , 2006, Ecology.

[9]  Henk Brinkhuis,et al.  Climate Transition Global Cooling During the Eocene-Oligocene , 2009 .

[10]  M. Rossetto,et al.  Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. , 2006, American journal of botany.

[11]  Stephen D. Hopper,et al.  OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes , 2009, Plant and Soil.

[12]  C. Thébaud,et al.  Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long‐distance dispersal, but not West Gondwana , 2010 .

[13]  W. Jetz,et al.  Global patterns and determinants of vascular plant diversity , 2007, Proceedings of the National Academy of Sciences.

[14]  C. Villagrán,et al.  Did South American Mixed Paleofloras evolve under thermal equability or in the absence of an effective Andean barrier during the Cenozoic , 2005 .

[15]  V. Savolainen,et al.  Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? , 2009, Molecular phylogenetics and evolution.

[16]  F. Woodward,et al.  Vegetation and the terrestrial carbon cycle:Modelling the first 400 million years , 2001 .

[17]  M. Gandolfo,et al.  Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). , 2012, Systematic biology.

[18]  Omar Fiz-Palacios,et al.  From Messinian crisis to Mediterranean climate: A temporal gap of diversification recovered from multiple plant phylogenies , 2013 .

[19]  M. Arroyo,et al.  Phylogeny of Chaetanthera (Asteraceae: Mutisieae) reveals both ancient and recent origins of the high elevation lineages. , 2006, Molecular phylogenetics and evolution.

[20]  From East Gondwana to Central America: historical biogeography of the Alstroemeriaceae , 2012 .

[21]  D. I. Axelrod Evolution and Biogeography of Madrean-Tethyan Sclerophyll Vegetation , 1975 .

[22]  M. Arroyo,et al.  Convergence in the mediterranean floras in central Chile and California: insights from comparative biogeography , 1995 .

[23]  J. Keogh,et al.  Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota , 2011 .

[24]  B. G. Baldwin Origins of Plant Diversity in the California Floristic Province , 2014 .

[25]  L. Mucina,et al.  Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework , 2011, Plant and Soil.

[26]  H. Linder Plant species radiations: where, when, why? , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  M. Macphail,et al.  Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia , 2004 .

[28]  J. Pausas,et al.  SYNDROME‐DRIVEN DIVERSIFICATION IN A MEDITERRANEAN ECOSYSTEM , 2013, Evolution; international journal of organic evolution.

[29]  R. Cowling,et al.  Plant diversity in mediterranean-climate regions. , 1996, Trends in ecology & evolution.

[30]  Curtis W. Marean,et al.  Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa , 2010 .

[31]  H. Linder,et al.  Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny , 2011, Proceedings of the Royal Society B: Biological Sciences.

[32]  Juli G Pausas,et al.  Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. , 2014, The New phytologist.

[33]  P. Goldblatt,et al.  Did Pollination Shifts Drive Diversification in Southern African Gladiolus? Evaluating the Model of Pollinator-Driven Speciation , 2012, The American Naturalist.

[34]  E. Martinetto,et al.  Late Miocene to Early Pliocene vegetation of southern Europe (7¿4Ma) as reflected in the megafossil plant record , 2006 .

[35]  V. Savolainen,et al.  Contrasted patterns of hyperdiversification in Mediterranean hotspots , 2009, Proceedings of the National Academy of Sciences.

[36]  M. Chase,et al.  Radiation in the Cape flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regions. , 2002, Molecular phylogenetics and evolution.

[37]  B. Lamont,et al.  Fitness and evolution of resprouters in relation to fire , 2011, Plant Ecology.

[38]  C. Villagrán,et al.  Are Chilean coastal forests pre‐Pleistocene relicts? Evidence from foliar physiognomy, palaeoclimate, and phytogeography , 2006 .

[39]  F. Cotterill,et al.  Dated Plant Phylogenies Resolve Neogene Climate and Landscape Evolution in the Cape Floristic Region , 2015, PloS one.

[40]  E. Barrón,et al.  Floristic changes in the Iberian Peninsula and Balearic Islands (south‐west Europe) during the Cenozoic , 2009 .

[41]  J. Lawton,et al.  Species interactions, local and regional processes, and limits to the richness of ecological communities : a theoretical perspective , 1992 .

[42]  M. Vieira,et al.  The Cenozoic vegetation of the Iberian Peninsula: A synthesis , 2010 .

[43]  H. Willems,et al.  The Benguela upwelling related to the Miocene cooling events and the development of the Antarctic Circumpolar Current: Evidence from calcareous dinoflagellate cysts , 2011 .

[44]  M. Westoby,et al.  Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species , 2003 .

[45]  J. Arroyo,et al.  Community ecology and distributional spectra of Mediterranean shrublands and heathlands in Southern Spain , 1990 .

[46]  P. Vargas,et al.  A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms , 2009 .

[47]  H. Sauquet,et al.  Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break‐up of Gondwana , 2007 .

[48]  D. Jacobs,et al.  GENES, DIVERSITY, AND GEOLOGIC PROCESS ON THE PACIFIC COAST , 2004 .

[49]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[50]  M. Reuter,et al.  LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma. , 2009 .

[51]  P. Vargas,et al.  Contrasting evolutionary hypotheses between two mediterranean‐climate floristic hotspots: the Cape of southern Africa and the Mediterranean Basin , 2013 .

[52]  J. Arroyo,et al.  Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot , 2013, Ecology and evolution.

[53]  M. Hershkovitz Ribosomal and chloroplast DNA evidence for diversification of western American Portulacaceae in the Andean region , 2006 .

[54]  Stephen A. Smith,et al.  The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science , 2010, Science.

[55]  H. Linder,et al.  Beyond climate: convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the mediterranean climate , 2016 .

[56]  Claire E Huck,et al.  Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch , 2012, Nature.

[57]  H. Linder,et al.  The radiation of the Cape flora, southern Africa , 2003, Biological reviews of the Cambridge Philosophical Society.

[58]  R. Cowling,et al.  Variation in plant diversity in mediterranean‐climate ecosystems: the role of climatic and topographical stability , 2015 .

[59]  B. Lamont,et al.  Adaptive responses to directional trait selection in the Miocene enabled Cape proteas to colonize the savanna grasslands , 2013, Evolutionary Ecology.

[60]  J. Kovar-Eder,et al.  The Integrated Plant Record: An Essential Tool For Reconstructing Neogene Zonal Vegetation In Europe , 2008 .

[61]  C. Villagrán Quaternary History of the Mediterranean Vegetation of Chile , 1995 .

[62]  G. Jiménez-Moreno,et al.  Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. , 2010 .

[63]  M. Byrne,et al.  Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia (Myrtaceae) in Western Australia , 2007 .

[64]  E. Schefuß,et al.  Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system , 2011 .

[65]  J. E. Meulenkamp,et al.  Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone , 2003 .

[66]  H. Peter Linder,et al.  Do Mediterranean‐type ecosystems have a common history?—Insights from the Buckthorn family (Rhamnaceae) , 2015, Evolution; international journal of organic evolution.

[67]  K. Kay,et al.  ORIGIN AND DIVERSIFICATION OF THE CALIFORNIA FLORA: RE‐EXAMINING CLASSIC HYPOTHESES WITH MOLECULAR PHYLOGENIES , 2013, Evolution; international journal of organic evolution.

[68]  A. Ellis,et al.  Speciation and extinction in the Greater Cape Floristic Region , 2014 .

[69]  W. Bond Fires in the Cenozoic: a late flowering of flammable ecosystems , 2015, Front. Plant Sci..

[70]  J. Aguirre,et al.  Vegetation, sea-level, and climate changes during the Messinian salinity crisis , 2013 .

[71]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[72]  M. Arroyo,et al.  Phylogenetic perspectives on biome shifts in Leucocoryne (Alliaceae) in relation to climatic niche evolution in western South America , 2014 .

[73]  E. Barrón,et al.  Patterns of extinction and persistence of Arctotertiary flora in Iberia during the Quaternary. , 2010 .

[74]  T. Hedderson,et al.  Unmatched tempo of evolution in Southern African semi-desert ice plants , 2004, Nature.

[75]  M. Crisp,et al.  How Was the Australian Flora Assembled Over the Last 65 Million Years? A Molecular Phylogenetic Perspective , 2013 .

[76]  D. Neale,et al.  Adaptive evolution of Mediterranean pines. , 2013, Molecular phylogenetics and evolution.

[77]  R. Ricklefs,et al.  Global patterns of tree species richness in moist forests : energy-diversity theory does not account for variation in species richness. , 1993 .

[78]  Roderic Brown,et al.  Linking source and sink: Evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break-up, South Africa , 2008 .

[79]  J. Beard Tertiary Evolution of the Australian Flora in the Light of Latitudinal Movements of the Continent , 1977 .

[80]  C. Mack,et al.  Eocene palynology of the Mulga Rocks deposits, southern Gunbarrel Basin, Western Australia , 2015 .

[81]  G. A. Verboom,et al.  Topography as a driver of diversification in the Cape Floristic Region of South Africa. , 2015, The New phytologist.

[82]  R. Pennington,et al.  Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire , 2009, Proceedings of the National Academy of Sciences.

[83]  R. Hill,et al.  A phylogenetic analysis of the Eucryphiaceae , 1996 .

[84]  F. Rodríguez‐Sánchez,et al.  The Strait of Gibraltar as a melting pot for plant biodiversity , 2008 .

[85]  V. Savolainen,et al.  Causes of plant diversification in the Cape biodiversity hotspot of South Africa. , 2011, Systematic biology.

[86]  R. Barnes,et al.  Phylogenetics and Classification of Cunoniaceae (Oxalidales) Using Chloroplast DNA Sequences and Morphology , 2009 .

[87]  R. Cowling,et al.  Vegetation types of the Greater Cape Floristic Region , 2014 .

[88]  D. Ackerly Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal , 2009, Proceedings of the National Academy of Sciences.

[89]  B. Lamont,et al.  Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa , 2011, Plant Ecology.

[90]  F. Médail,et al.  Glacial refugia influence plant diversity patterns in the Mediterranean Basin , 2009 .

[91]  W. Bond,et al.  Fire and the spread of flowering plants in the Cretaceous. , 2010, The New phytologist.

[92]  B. Lamont,et al.  Hakea, the world's most sclerophyllous genus, arose in southwestern Australian heathland and diversified throughout Australia over the past 12million years , 2016 .

[93]  S. Wing Eocene and Oligocene Floras and Vegetation of the Rocky Mountains , 1987 .

[94]  J. Suc Origin and evolution of the Mediterranean vegetation and climate in Europe , 1984, Nature.

[95]  L. Rüpke,et al.  Deep roots of the Messinian salinity crisis , 2003, Nature.

[96]  S. Madriñán,et al.  Páramo is the world's fastest evolving and coolest biodiversity hotspot , 2013, Front. Genet..

[97]  M. Macphail,et al.  Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia , 2004 .

[98]  R. Hill,et al.  Fossil evidence for open, Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia. , 2015, American journal of botany.

[99]  P. García‐Fayos,et al.  ‘Convergent’ traits of mediterranean woody plants belong to pre-mediterranean lineages , 2003 .

[100]  M. Donoghue,et al.  Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.

[101]  E. Cano,et al.  Testing the biogeographical congruence of palaeofloras using molecular phylogenetics: snapdragons and the Madrean–Tethyan flora , 2014 .

[102]  B. Reineking,et al.  Species-Specific Traits plus Stabilizing Processes Best Explain Coexistence in Biodiverse Fire-Prone Plant Communities , 2013, PloS one.

[103]  P. Gadek,et al.  Divergence, diversity and species of the Australasian Callitris (Cupressaceae) and allied genera: evidence from ITS sequence data , 2003 .

[104]  B. Lamont,et al.  Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous , 2012, BMC Evolutionary Biology.

[105]  S. Hopper,et al.  Biodiversity hotspots and Ocbil theory , 2016, Plant and Soil.

[106]  Emanuel Palamarev,et al.  Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora , 1989, Plant Systematics and Evolution.

[107]  J. Keeley,et al.  A Burning Story: The Role of Fire in the History of Life , 2009 .

[108]  Freea Itzstein‐Davey A spatial and temporal Eocene palaeoenvironmental study, focusing on the proteaceae family, from Kambalda, Western Australia. , 2004 .

[109]  M. Chase,et al.  DIVERSIFICATION OF THE AFRICAN GENUS PROTEA (PROTEACEAE) IN THE CAPE BIODIVERSITY HOTSPOT AND BEYOND: EQUAL RATES IN DIFFERENT BIOMES , 2010, Evolution; international journal of organic evolution.

[110]  Fitness benefits of serotiny in fire- and drought-prone environments , 2016, Plant Ecology.

[111]  Michael J. Donoghue,et al.  A phylogenetic perspective on the distribution of plant diversity , 2008, Proceedings of the National Academy of Sciences.

[112]  James B. Grace,et al.  REGIONAL AND LOCAL SPECIES RICHNESS IN AN INSULAR ENVIRONMENT: SERPENTINE PLANTS IN CALIFORNIA , 2006 .

[113]  K. Sytsma,et al.  Phylogenetics of Puya (Bromeliaceae): Placement, major lineages, and evolution of Chilean species. , 2010, American journal of botany.

[114]  P. Vargas,et al.  Adaptive Radiation in Mediterranean Cistus (Cistaceae) , 2009, PloS one.

[115]  E. Goldberg,et al.  ORIGINS AND CONSEQUENCES OF SERPENTINE ENDEMISM IN THE CALIFORNIA FLORA , 2011, Evolution; international journal of organic evolution.

[116]  R. Cowling,et al.  Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone mediterranean-climate ecosystems , 2005 .

[117]  L. Hinojosa Cambios climáticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sudamérica , 2005 .

[118]  V. Savolainen,et al.  Unparalleled rates of species diversification in Europe , 2010, Proceedings of the Royal Society B: Biological Sciences.

[119]  D. Steane,et al.  Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.