Characterization of Ce-doped lithium borosilicate glasses as tissue-equivalent phosphors for radiation measurements

[1]  N. Kawano,et al.  Radiation-induced luminescence properties of Tb-doped Li 3 PO 4 -B 2 O 3 glasses , 2018 .

[2]  T. Yanagida,et al.  X-ray-induced Scintillation Governed by Energy Transfer Process in Glasses , 2018, Scientific Reports.

[3]  N. Kawano,et al.  Optical and radiation-induced luminescence properties of Ce-doped magnesium aluminoborate glasses , 2017 .

[4]  T. Yanagida,et al.  Scintillation, TSL and OSL properties of Ce-doped 30Zn3(PO4)2-70Al(PO3)3 glasses , 2017, Journal of Materials Science: Materials in Electronics.

[5]  Ryan J. Shawgo,et al.  New Developments in Scintillators for Security Applications , 2017 .

[6]  T. Yanagida,et al.  Scintillation and dosimeter properties of Ce-doped Li3PO4–Al(PO3)3 glasses , 2016 .

[7]  A. Sontakke,et al.  Effect of synthesis conditions on Ce3 + luminescence in borate glasses , 2016 .

[8]  T. Yanagida Ionizing radiation induced emission: Scintillation and storage-type luminescence , 2016 .

[9]  K. Smits,et al.  Studies of radiation defects in cerium, europium and terbium activated oxyfluoride glasses and glass ceramics , 2015 .

[10]  H. Nanto,et al.  Scintillation and optical stimulated luminescence of Ce-doped CaF2 , 2014 .

[11]  T. Yanagida,et al.  Development of X-ray-induced afterglow characterization system , 2014 .

[12]  T. Yanagida,et al.  Dosimeter properties of AlN , 2013 .

[13]  V. Chani,et al.  Optical and scintillation properties of Ce-doped LuLiF4 with different Ce concentrations , 2013 .

[14]  Hideki Yagi,et al.  Comparative study of ceramic and single crystal Ce:GAGG scintillator , 2013 .

[15]  W. Ullrich,et al.  The BeOmax system - Dosimetry using OSL of BeO for several applications , 2013 .

[16]  Takayuki Yanagida,et al.  Study of rare-earth-doped scintillators , 2013 .

[17]  H. Nanto,et al.  Optical properties in Ag+-doped phosphate glass irradiated with X-rays and α-particles , 2013 .

[18]  S. Kurosawa,et al.  Study of the correlation of scintillation decay and emission wavelength , 2013 .

[19]  Danping Chen,et al.  Luminescence and scintillation of Ce3+‐doped oxide glass with high Gd2O3 concentration , 2011 .

[20]  S. Kasap,et al.  Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses , 2011 .

[21]  B. Bhatt,et al.  Thermoluminescence, optically stimulated luminescence and radiophotoluminescence dosimetry: An overall perspective , 2011, Radiation Protection and Environment.

[22]  Uwe Titt,et al.  Medical applications of optically stimulated luminescence dosimeters (OSLDs) , 2010 .

[23]  K. Miura,et al.  Ionizing Radiation Sensor Utilizing Radiophotoluminescence in Ag+-Activated Phosphate Glass and Its Application to Environmental Radiation Monitoring , 2010 .

[24]  V. Lyamayev,et al.  Influence of reducing annealing on the luminescent properties of Li2B4O7:Cu single crystals , 2007 .

[25]  T. Tanaka,et al.  Developments of a New 1-Dimensional$gamma$-Ray Position Sensor Using Scintillators Coupled to a Si Strip Detector , 2006, IEEE Transactions on Nuclear Science.

[26]  H. Yagi,et al.  Evaluation of properties of YAG (Ce) ceramic scintillators , 2005, IEEE Transactions on Nuclear Science.

[27]  Fuxi Gan,et al.  Radioluminescence of Ce3+-doped B2O3–SiO2–Gd2O3–BaO glass , 2004 .

[28]  Marvin J. Weber,et al.  Inorganic scintillators: today and tomorrow , 2002 .

[29]  Norberto Chiodini,et al.  High-efficiency SiO2:Ce3+ glass scintillators , 2002 .

[30]  J. L. Muñiz,et al.  Application of glow curve analysis methods to radiotherapy mailed dosimetry with LiF TLD-100. , 1995, Physics in medicine and biology.

[31]  V. S. Kortov,et al.  Highly Sensitive Thermoluminescent Anion-Defect Alpha-Al2O3:C Single Crystal Detectors , 1990 .

[32]  G. Zanella,et al.  Light yield in cerium scintillating glasses under X-ray excitation , 1990 .

[33]  R. Doremus,et al.  Short time reactions of a na2o-cao-sio2 glass with water and salt solutions , 1987 .

[34]  D. J. Robbins,et al.  On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation , 1980 .

[35]  C A Jayachandran,et al.  Calculated effective atomic number and kerma values for tissue-equivalent and dosimetry materials. , 1971, Physics in medicine and biology.