Precipitation of an insoluble, insulating product on monolayer-functionalized electrodes enables the development of new electrochemical biosensors. Faradaic impedance spectroscopy and cyclic voltammetry are used to probe the electron-transfer resistance at the conductive support upon the accumulation of the insoluble product on the electrode surface. Similarly, microgravimetric quartz crystal microbalance, QCM, analyses were used to assay the formation of the precipitate on the electrode. A horseradish peroxidase, HRP, monolayer electrode is used to analyze H2O2 via the biocatalyzed oxidation of 4-chloro-1-naphthol (1) and the precipitation of the insoluble product (2). A bienzyme-layered electrode consisting of HRP and glucose oxidase, GOx, is used to sense glucose. Biocatalyzed oxidation of glucose by O2, in the presence of GOx, yields H2O2, and the generated hydrogen peroxide effects the formation of the insoluble product (2) in the presence of HRP. The insoluble product accumulated on the electrode, and the extent of the resulting electron-transfer resistance, correlated with the amounts of H2O2 or glucose, and appropriate calibration curves are extracted.