Unexpectedly High Levels of Cryptic Diversity Uncovered by a Complete DNA Barcoding of Reptiles of the Socotra Archipelago

Few DNA barcoding studies of squamate reptiles have been conducted. Due to the significance of the Socotra Archipelago (a UNESCO Natural World Heritage site and a biodiversity hotspot) and the conservation interest of its reptile fauna (94% endemics), we performed the most comprehensive DNA barcoding study on an island group to date to test its applicability to specimen identification and species discovery. Reptiles constitute Socotra’s most important vertebrate fauna, yet their taxonomy remains under-studied. We successfully DNA-barcoded 380 individuals of all 31 presently recognized species. The specimen identification success rate is moderate to high, and almost all species presented local barcoding gaps. The unexpected high levels of intra-specific variability found within some species suggest cryptic diversity. Species richness may be under-estimated by 13.8–54.4%. This has implications in the species’ ranges and conservation status that should be considered for conservation planning. Other phylogenetic studies using mitochondrial and nuclear markers are congruent with our results. We conclude that, despite its reduced length (663 base pairs), cytochrome c oxidase 1, COI, is very useful for specimen identification and for detecting intra-specific diversity, and has a good phylogenetic signal. We recommend DNA barcoding to be applied to other biodiversity hotspots for quickly and cost-efficiently flagging species discovery, preferentially incorporated into an integrative taxonomic framework.

[1]  S. Carranza,et al.  Forgotten in the ocean: systematics, biogeography and evolution of the Trachylepis skinks of the Socotra Archipelago , 2012 .

[2]  C. Moritz,et al.  DNA barcoding will often fail to discover new animal species over broad parameter space. , 2006, Systematic biology.

[3]  P. Scholte,et al.  When conservation precedes development: a case study of the opening up of the Socotra archipelago, Yemen , 2011, Oryx.

[4]  S. Carranza,et al.  A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species , 2012 .

[5]  D. G. Chapple,et al.  A Retrospective Approach to Testing the DNA Barcoding Method , 2013, PloS one.

[6]  J. Bond,et al.  An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). , 2014, Molecular phylogenetics and evolution.

[7]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[8]  X. Xia DAMBE5: A Comprehensive Software Package for Data Analysis in Molecular Biology and Evolution , 2013, Molecular biology and evolution.

[9]  Alfried P Vogler,et al.  Sequence-based species delimitation for the DNA taxonomy of undescribed insects. , 2006, Systematic biology.

[10]  M. Vences,et al.  Cold Code: the global initiative to DNA barcode amphibians and nonavian reptiles , 2013 .

[11]  B. Sinervo,et al.  Lizards as model organisms for linking phylogeographic and speciation studies , 2010, Molecular ecology.

[12]  Michael Balke,et al.  Accelerated species inventory on Madagascar using coalescent-based models of species delineation. , 2009, Systematic biology.

[13]  R. Vasconcelos,et al.  Predation on Trachylepis socotrana by Lanius meridionalis , 2014 .

[14]  D. Silvestro,et al.  raxmlGUI: a graphical front-end for RAxML , 2011, Organisms Diversity & Evolution.

[15]  T. Townsend,et al.  Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species , 2012, Biology Letters.

[16]  S. Edwards,et al.  GENE DIVERGENCE , POPULATION DIVERGENCE , AND THE VARIANCE IN COALESCENCE TIME IN PHYLOGEOGRAPHIC STUDIES , 2001 .

[17]  William Bosworth,et al.  The Red Sea and Gulf of Aden Basins , 2005 .

[18]  K. V. Damme,et al.  Past and present human impacts on the biodiversity of Socotra Island (Yemen): implications for future conservation , 2011 .

[19]  R. Meier,et al.  The use of mean instead of smallest interspecific distances exaggerates the size of the "barcoding gap" and leads to misidentification. , 2008, Systematic biology.

[20]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[21]  T. Brooks,et al.  Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions , 2000 .

[22]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[23]  C. Meyer,et al.  DNA Barcoding: Error Rates Based on Comprehensive Sampling , 2005, PLoS biology.

[24]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  T. Barraclough,et al.  Delimiting Species Using Single-Locus Data and the Generalized Mixed Yule Coalescent Approach: A Revised Method and Evaluation on Simulated Data Sets , 2013, Systematic biology.

[26]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[27]  C. Grieco,et al.  Annotated checklist and distribution of the Socotran Archipelago Herpetofauna (Reptilia) , 2011 .

[28]  R. Vilà,et al.  Factors affecting species delimitations with the GMYC model: insights from a butterfly survey , 2013 .

[29]  R. Vasconcelos,et al.  An integrative taxonomic revision of the Tarentola geckos (Squamata, Phyllodactylidae) of the Cape Verde Islands , 2012 .

[30]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[31]  S. Carranza,et al.  Out of Arabia: A Complex Biogeographic History of Multiple Vicariance and Dispersal Events in the Gecko Genus Hemidactylus (Reptilia: Gekkonidae) , 2013, PloS one.

[32]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[33]  J. Pons,et al.  Mitochondrial Cox1 Sequence Data Reliably Uncover Patterns of Insect Diversity But Suffer from High Lineage-Idiosyncratic Error Rates , 2010, PloS one.

[34]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[35]  P. Scholte,et al.  The climate of Socotra Island (Yemen): A first-time assessment of the timing of the monsoon wind reversal and its influence on precipitation and vegetation patterns , 2010 .

[36]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[37]  R. Vilà,et al.  Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe , 2011, Proceedings of the Royal Society B: Biological Sciences.

[38]  R. Hochberg,et al.  Two new freshwater rhabdocoels, Austrodalyellia gen. nov. and Haplodidymos gen. nov. (Platyhelminthes), from Queensland, Australia , 2002 .

[39]  J. Červenka,et al.  Phylogenetic relationships of Semaphore geckos (Squamata: Sphaerodactylidae: Pristurus) with an assessment of the taxonomy of Pristurus rupestris. , 2014, Zootaxa.

[40]  M. Vences,et al.  DNA barcoding amphibians and reptiles. , 2012, Methods in molecular biology.

[41]  Z. Nagy,et al.  Reliable DNA Barcoding Performance Proved for Species and Island Populations of Comoran Squamate Reptiles , 2013, PloS one.

[42]  M. Wiemers,et al.  Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae) , 2007, Frontiers in Zoology.

[43]  Michael Balke,et al.  The Effect of Geographical Scale of Sampling on DNA Barcoding , 2012, Systematic biology.

[44]  R. Cruickshank,et al.  The seven deadly sins of DNA barcoding , 2012, Molecular ecology resources.

[45]  Gaurav Vaidya,et al.  DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. , 2006, Systematic biology.

[46]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[47]  R. Vasconcelos,et al.  Systematics and biogeography of Hemidactylus homoeolepis Blanford, 1881 (Squamata: Gekkonidae), with the description of a new species from Arabia. , 2014, Zootaxa.

[48]  M. Vences,et al.  First Large-Scale DNA Barcoding Assessment of Reptiles in the Biodiversity Hotspot of Madagascar, Based on Newly Designed COI Primers , 2012, PloS one.

[49]  R. Ricklefs,et al.  Adaptation and diversification on islands , 2009, Nature.

[50]  P. Hebert,et al.  Identification of Birds through DNA Barcodes , 2004, PLoS biology.

[51]  R. Ward,et al.  DNA barcoding Australia's fish species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  S. Trewick DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae). , 2008 .

[53]  S. Carranza,et al.  Origin and in situ diversification in Hemidactylus geckos of the Socotra Archipelago , 2012, Molecular ecology.

[54]  N. Bellahsen,et al.  The role of structural inheritance in oblique rifting: Insights from analogue models and application to the Gulf of Aden , 2013 .

[55]  M. Carretero,et al.  What do Myrmecophagous Geckos Eat When Ants are not Available?: Comparative Diets of Three Socotran Species , 2010 .