Robust consistent correspondence between 3D non-rigid shapes based on “Dual Shape-DNA”

In this paper, we propose a novel framework to construct dense and high-quality consistent correspondence between non-rigid surfaces. Our correspondence framework exploits “Dual Shape-DNA” (dual Laplace-Beltrami spectral embedding) to capture global characteristics of objects, and converts two originally different and complex shapes into two similar and simple shapes to facilitate the correspondence. Since our method avoids the computation of geodesic distances, it is robust to local topology changes. By exploiting the excellent properties of the dual domain, our dual spectral framework can robustly construct Laplace-Beltrami embeddings on highly non-regular 3D meshes. After performing initial non-rigid matching in the dual Laplace-Beltrami spectral domain, we return 3D spatial domain and apply a shape-preserving non-rigid deformation to produce the final dense consistent correspondence. We show that our framework is suitable for non-rigid consistent correspondence, and the high-quality correspondence results are achieved.

[1]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[2]  M. McPeek,et al.  Modeling Three-Dimensional Morphological Structures Using Spherical Harmonics , 2009, Evolution; international journal of organic evolution.

[3]  Hongbin Zha,et al.  Partwise Cross-Parameterization via Nonregular Convex Hull Domains , 2011, IEEE Transactions on Visualization and Computer Graphics.

[4]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[5]  Sen Wang,et al.  High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps , 2008, International Journal of Computer Vision.

[6]  Terry Caelli,et al.  An eigenspace projection clustering method for inexact graph matching , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[8]  Ying Wang,et al.  Spherical representations of shape using parametrizations with minimal distortion , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[9]  Sen Wang,et al.  3D Surface Matching and Recognition Using Conformal Geometry , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[10]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[11]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[12]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[13]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[14]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[15]  Gabriel Taubin,et al.  Dual Mesh Resampling , 2001, Graph. Model..

[16]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.

[17]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[18]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[19]  Chunhong Pan,et al.  Consistent Correspondence between Arbitrary Manifold Surfaces , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  Sami Romdhani,et al.  Optimal Step Nonrigid ICP Algorithms for Surface Registration , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[22]  Arthur W. Toga,et al.  Harmonic Surface Mapping with Laplace-Beltrami Eigenmaps , 2008, MICCAI.

[23]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[24]  Edwin R. Hancock,et al.  Correspondence Matching with Modal Clusters , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[26]  Hans-Peter Seidel,et al.  Fitting a Morphable Model to 3D Scans of Faces , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[27]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[29]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[31]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[32]  Alexander M. Bronstein,et al.  Shape Recognition with Spectral Distances , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Yan Cao,et al.  Spectral Surface Deformation with Dual Mesh , 2008 .

[34]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[35]  Anuj Srivastava,et al.  A novel riemannian framework for shape analysis of 3D objects , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Hongbo Fu,et al.  Effective Derivation of Similarity Transformations for Implicit Laplacian Mesh Editing , 2007, Comput. Graph. Forum.

[37]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[38]  Paul M. Thompson,et al.  Surface parameterization using Riemann surface structure , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[39]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Chen Liang,et al.  Complex 3D shape recovery using a dual-space approach , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[41]  Sen Wang,et al.  High resolution tracking of non-rigid 3D motion of densely sampled data using harmonic maps , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[42]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[43]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[44]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.