Homogenization in non-linear dynamics due to frictional contact

This work is devoted to a study of the classical homogenization process and its influence on the behavior of a composite under non-linear dynamic loading due to contact and friction. First, the general problem of convergence of numerical models subjected to dynamic contact with friction loading is addressed. The use of a regularized friction law allows obtaining good convergence of such models. This study shows that for a dynamic contact with friction loading, the classical homogenization process, coupled with an homogenization of the frictional contact, enables replacing the entire heterogeneous model by a homogenized one. The dynamic part of the frictional contact must be homogenized by modifying the dynamic parameter of the friction law. Modification of the dynamic parameter of the friction law is function of the type and regime of instability. A calculation of a homogenized friction coefficient is presented in view to homogenizing the static part of the frictional contact when the friction coefficient is not constant over the contact surface. Finally matrix and heterogeneities stresses in the heterogeneous models are identified by using the relocalization process and a frictional contact dynamic analysis of a homogeneous model.

[1]  Laurent Baillet,et al.  Finite Element Simulation of Dynamic Instabilities in Frictional Sliding Contact , 2003 .

[2]  John R. Rice,et al.  Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse response , 2000 .

[3]  Jacob Fish,et al.  Space?time multiscale model for wave propagation in heterogeneous media , 2004 .

[4]  T. Bretheau,et al.  Homogénéisation en mécanique des matériaux, Tome 1 : Matériaux aléatoires élastiques et milieux périodiques , 2001 .

[5]  Claude Boutin,et al.  Rayleigh scattering in elastic composite materials , 1993 .

[6]  P. Alart,et al.  Numerical study of a stratified composite coupling homogenization and frictional contact , 1998 .

[7]  F. Simões,et al.  Instability and ill-posedness in some friction problems , 1998 .

[8]  Aldo Sestieri,et al.  Brake squeal: Linear and nonlinear numerical approaches , 2007 .

[9]  John R. Rice,et al.  Slip dynamics at an interface between dissimilar materials , 2001 .

[10]  Vikas Prakash,et al.  Frictional Response of Sliding Interfaces Subjected to Time Varying Normal Pressures , 1998 .

[11]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[12]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[13]  Rodney J. Clifton,et al.  Time resolved dynamic friction measurements in pressure-shear , 1993 .

[14]  Laurent Baillet,et al.  Finite Element Simulation of Dynamic Instabilities in Frictional Sliding Contact , 2003 .

[15]  M. Raous,et al.  Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction , 1999 .

[16]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[17]  Y. Ben‐Zion Dynamic ruptures in recent models of earthquake faults , 2001 .

[18]  Ares J. Rosakis,et al.  Sliding of Frictionally Held Incoherent Interfaces Under Dynamic Shear Loading , 2004 .

[19]  George G. Adams,et al.  Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction , 1995 .

[20]  M. Renardy Ill-posedness at the boundary for elastic solids sliding under Coulomb friction , 1992 .

[21]  J. Fish,et al.  A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales , 2001 .

[22]  Laurent Baillet,et al.  Modeling the consequences of local kinematics of the first body on friction and on third body sources in wear , 2003 .

[23]  Taoufik Sassi,et al.  Méthode d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement , 2002 .

[24]  J. M. Sanz-Serna,et al.  Regions of stability, equivalence theorems and the Courant-Friedrichs-Lewy condition , 1986 .

[25]  Claude Boutin,et al.  Microstructural effects in elastic composites , 1996 .