Approximate ab initio energies by systematic molecular fragmentation.

A scheme is introduced for generating a hierarchy of molecular fragmentations by which the total electronic energy can be approximated from the energies of the fragments. Higher levels in the hierarchy produce molecular fragments of larger size and approximate the total electronic energy more reliably. A correction to account for nonbonded interactions is also presented. The accuracy of the approach is tested for a number of examples, and shown to be essentially independent of the level of ab initio theory employed. The computational cost increases linearly with the size of the molecule.

[1]  Yihan Shao,et al.  Improved Fermi operator expansion methods for fast electronic structure calculations , 2003 .

[2]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[3]  S. L. Dixon,et al.  Semiempirical molecular orbital calculations with linear system size scaling , 1996 .

[4]  Leo Radom,et al.  Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation , 1970 .

[5]  C. Bock,et al.  An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons , 1975 .

[6]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[7]  Rodney J Bartlett,et al.  A natural linear scaling coupled-cluster method. , 2004, The Journal of chemical physics.

[8]  Yang,et al.  Direct calculation of electron density in density-functional theory: Implementation for benzene and a tetrapeptide. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[10]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. VII. Parallel computation of the Coulomb matrix. , 2004, The Journal of chemical physics.

[11]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[12]  Shubin Liu,et al.  Nonorthogonal localized molecular orbitals in electronic structure theory , 2000 .

[13]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[14]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[15]  Michael J. Frisch,et al.  Density matrix search using direct inversion in the iterative subspace as a linear scaling alternative to diagonalization in electronic structure calculations , 2003 .

[16]  Mark Ainsworth,et al.  Wavelets, multilevel methods and elliptic PDEs , 1997 .

[17]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[18]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[19]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[20]  Pablo Ordejón,et al.  Order-N tight-binding methods for electronic-structure and molecular dynamics , 1998 .

[21]  Fernando Cortés-Guzmán,et al.  Transferability of group energies and satisfaction of the virial theorem , 2003 .

[22]  Gregory Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange. , 2004, The Journal of chemical physics.

[23]  Wei Li,et al.  Divide-and-conquer local correlation approach to the correlation energy of large molecules. , 2004, The Journal of chemical physics.