Cluster categories for marked surfaces: punctured case
暂无分享,去创建一个
[1] Y. Qiu,et al. Decorated marked surfaces II: Intersection numbers and dimensions of Homs , 2014, Transactions of the American Mathematical Society.
[2] Matthew R. Mills. Maximal green sequences for quivers of finite mutation type , 2016, 1606.03799.
[3] C. Geiss,et al. The representation type of Jacobian algebras , 2013, 1308.0478.
[4] R. Schiffler,et al. Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs , 2015, Mathematische Zeitschrift.
[5] Y. Qiu,et al. Tagged mapping class groups: Auslander–Reiten translation , 2012, 1212.0007.
[6] A. King,et al. Exchange graphs and Ext quivers , 2011, 1109.2924.
[7] Sibylle Schroll,et al. Extensions in Jacobian Algebras and Cluster Categories of Marked Surfaces , 2014, 1408.2074.
[8] Y. Qiu. Decorated marked surfaces: spherical twists versus braid twists , 2014, 1407.0806.
[9] Ralf Schiffler,et al. Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs , 2014, 1407.0500.
[10] Yann Palu,et al. Coloured quivers for rigid objects and partial triangulations: the unpunctured case , 2010, 1012.5790.
[11] D. Labardini-Fragoso. On triangulations, quivers with potentials and mutations , 2013, 1302.1936.
[12] I. Reiten,et al. $\tau $-tilting theory , 2012, Compositio Mathematica.
[13] R. Schiffler,et al. Snake graph calculus and cluster algebras from surfaces III: Band graphs and snake rings , 2012, 1506.01742.
[14] Yu Zhou,et al. Cotorsion pairs in the cluster category of a marked surface , 2012, 1205.1504.
[15] B. Keller. Cluster algebras and derived categories , 2012, 1202.4161.
[16] L. Williams,et al. Bases for cluster algebras from surfaces , 2011, Compositio Mathematica.
[17] Giovanni Cerulli Irelli,et al. Quivers with potentials associated to triangulated surfaces, Part III: tagged triangulations and cluster monomials , 2011, Compositio Mathematica.
[18] A. King,et al. EXCHANGE GRAPHS OF ACYCLIC CALABI-YAU CATEGORIES , 2012 .
[19] C. Vafa,et al. BPS Quivers and Spectra of Complete N=2 Quantum Field Theories , 2011 .
[20] C. Vafa,et al. BPS Quivers and Spectra of Complete $${\mathcal{N} = 2}$$N=2 Quantum Field Theories , 2011, 1109.4941.
[21] L. Williams,et al. Matrix formulae and skein relations for cluster algebras from surfaces , 2011, 1108.3382.
[22] T. Brustle,et al. On the cluster category of a marked surface without punctures , 2010, 1005.2422.
[23] Pierre-Guy Plamondon. Cluster algebras via cluster categories with infinite-dimensional morphism spaces , 2010, Compositio Mathematica.
[24] H. Thomas,et al. From m-clusters to m-noncrossing partitions via exceptional sequences , 2010, 1007.0928.
[25] J. Lott,et al. The index of a transverse Dirac-type operator: the case of abelian Molino sheaf , 2010, 1005.0161.
[26] D. Labardini-Fragoso. Quivers with potentials associated to triangulated surfaces, Part II: Arc representations , 2009, 0909.4100.
[27] B. Keller,et al. Deformed Calabi–Yau completions , 2009, 0908.3499.
[28] B. Keller,et al. Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.
[29] L. Williams,et al. Positivity for cluster algebras from surfaces , 2009, 0906.0748.
[30] Ibrahim Assem,et al. Gentle algebras arising from surface triangulations , 2009, 0903.3347.
[31] M. Shapiro,et al. Skew-symmetric cluster algebras of finite mutation type , 2008, 0811.1703.
[32] Claire Amiot. Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.
[33] D. Labardini-Fragoso,et al. Quivers with potentials associated to triangulated surfaces , 2008, 0803.1328.
[34] Y. Yoshino,et al. Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.
[35] Yann Palu. Cluster characters for 2-Calabi–Yau triangulated categories , 2008 .
[36] J. Weyman,et al. Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.
[37] Yann Palu. Cluster characters for triangulated 2-Calabi--Yau categories , 2007, math/0703540.
[38] D. Thurston,et al. Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.
[39] R. Schiffler. A geometric model for cluster categories of type Dn , 2006, math/0608264.
[40] S. Koenig,et al. From triangulated categories to abelian categories: cluster tilting in a general framework , 2006, math/0605100.
[41] V. Nicholson. Twisted Surfaces , 2006 .
[42] O. Iyama. Mutations in triangulated categories and rigid Cohen-Macaulay modules , 2006 .
[43] I. Reiten,et al. Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.
[44] I. Reiten,et al. Tilting theory and cluster combinatorics , 2004, math/0402054.
[45] R. Schiffler,et al. Quivers with relations arising from clusters $(A_n$ case) , 2004, math/0401316.
[46] A. Goncharov,et al. Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.
[47] A. Goncharov,et al. Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.
[48] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[49] B. Deng. On a problem of Nazarova and Roiter , 2000 .
[50] C. Geiss. Maps Between Representations of Clans , 1999 .
[51] J. A. Peña,et al. Auslander-Reiten components for clans , 1999 .
[52] W. Crawley-Boevey. Functorial Filtrations II: Clans and the Gelfand Problem , 1989 .