A note on the finite element method for the space-fractional advection diffusion equation

In this paper, a note on the finite element method for the space-fractional advection diffusion equation with non-homogeneous initial-boundary condition is given, where the fractional derivative is in the sense of Caputo. The error estimate is derived, and the numerical results presented support the theoretical results.

[1]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[2]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[3]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[4]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[5]  K. S. Chaudhuri,et al.  Application of modified decomposition method for the analytical solution of space fractional diffusion equation , 2008, Appl. Math. Comput..

[6]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[7]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[8]  Liu Fa-wang Analysis of Stability and Convergence of Numerical Approximation for the Riesz Fractional Reaction-dispersion Equation , 2006 .

[9]  Wojbor A. Woyczyński,et al.  Global and Exploding Solutions for Nonlocal Quadratic Evolution Problems , 1998, SIAM J. Appl. Math..

[10]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[11]  Weihua Deng,et al.  The evolution of chaotic dynamics for fractional unified system , 2008 .

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .