Cellular Nonlinear Networks with Memristor Synapses

Cellular Nonlinear/Nanoscale Networks (CNNs) that can provide parallel processing in massive scale are known to be suitable for neuromorphic applications such as vision systems. In CNNs, synaptic weights can be calculated by digital or analog multiplications. Though conventional CMOS digital circuits can be used in calculating these multiplications for CNN applications, they occupy very large area and consume a large amount of power, especially when multiplications should be calculated in parallel in massive scale. On the other hand, analog circuits seem to be very attractive for calculating multiplications for CNN applications. One possible approach is to multiply the input current by the programmable resistance of a memristor before applying the resulting voltage to a differential pair for the final voltage-to-current conversion. In this chapter we introduce some analog circuits for CNN applications that use the resistance of a memristor in calculating multiplications. In addition we discuss memristor models and some practical problems in CNN circuits that should be resolved using analog memristor-based implementations.

[1]  Uri C. Weiser,et al.  TEAM: ThrEshold Adaptive Memristor Model , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Fernando Corinto,et al.  Memristive diode bridge with LCR filter , 2012 .

[3]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[4]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[5]  Y. Pershin,et al.  Erratum: Memristive model of amoeba learning [Phys. Rev. E 80 , 021926 (2009)] , 2010 .

[6]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[7]  Leon O. Chua,et al.  Neural Synaptic Weighting With a Pulse-Based Memristor Circuit , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[9]  György Cserey,et al.  Macromodeling of the Memristor in SPICE , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  D. Biolek,et al.  Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'self-crossing' , 2011 .

[11]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[12]  Bernabé Linares-Barranco,et al.  Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses , 2009 .

[13]  Derek Abbott,et al.  Memristive Device Fundamentals and Modeling: Applications to Circuits and Systems Simulation , 2012, Proceedings of the IEEE.

[14]  R. Tetzlaff,et al.  Advanced memristive model of synapses with adaptive thresholds , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[15]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[16]  Ángel Rodríguez-Vázquez,et al.  A 0.8-μm CMOS two-dimensional programmable mixed-signal focal-plane array processor with on-chip binary imaging and instructions storage , 1997, IEEE J. Solid State Circuits.

[17]  Y. V. Pershin,et al.  SPICE Model of Memristive Devices with Threshold , 2012, 1204.2600.

[18]  Jussi H. Poikonen,et al.  Time-dependency of the threshold voltage in memristive devices , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[19]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[20]  Fernando Corinto,et al.  Memristor-based neural circuits , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[21]  D. Batas,et al.  A Memristor SPICE Implementation and a New Approach for Magnetic Flux-Controlled Memristor Modeling , 2011, IEEE Transactions on Nanotechnology.

[22]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[23]  Huaguang Zhang,et al.  Improved Robust Stability Criteria for Delayed Cellular Neural Networks via the LMI Approach , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[25]  E. Lehtonen,et al.  CNN using memristors for neighborhood connections , 2010, 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010).

[26]  Jordi Albo-Canals,et al.  Teaching Memristors to EE Undergraduate Students , 2011 .

[27]  Naoto Nagaosa,et al.  Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance. , 2005, Physical review letters.

[28]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[29]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  K. Eshraghian,et al.  The fourth element: characteristics, modelling and electromagnetic theory of the memristor , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[32]  C. Toumazou,et al.  A Versatile Memristor Model With Nonlinear Dopant Kinetics , 2011, IEEE Transactions on Electron Devices.

[33]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[34]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[35]  Leon O. Chua,et al.  The Fourth Element , 2012, Proceedings of the IEEE.

[36]  Fernando Corinto,et al.  A Boundary Condition-Based Approach to the Modeling of Memristor Nanostructures , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Kyeong-Sik Min,et al.  Synaptic weighting circuits for Cellular Neural Networks , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[38]  P. Vontobel,et al.  Writing to and reading from a nano-scale crossbar memory based on memristors , 2009, Nanotechnology.

[39]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[40]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[41]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[42]  Ronald Tetzlaff,et al.  PSpice switch-based versatile memristor model , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[43]  J. Albo-Canals,et al.  Teaching Memristors to EE Undergraduate Students [Class Notes] , 2011, IEEE Circuits and Systems Magazine.

[44]  Leon O. Chua,et al.  A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators , 2012, Sensors.

[45]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[46]  Leon O. Chua,et al.  Memristor Bridge Synapses , 2012, Proceedings of the IEEE.

[47]  Kyeong-Sik Min,et al.  Zero-Sleep-Leakage Flip-Flop Circuit With Conditional-Storing Memristor Retention Latch , 2012, IEEE Transactions on Nanotechnology.

[48]  Matthew D. Pickett,et al.  SPICE modeling of memristors , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[49]  Tae Hee Kim,et al.  Nanoparticle assemblies as memristors. , 2009, Nano letters.

[50]  F. Corinto,et al.  Memristor Model Comparison , 2013, IEEE Circuits and Systems Magazine.

[51]  Tamás Roska,et al.  The CNN universal machine: an analogic array computer , 1993 .

[52]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[53]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[54]  L. Chua Memristor-The missing circuit element , 1971 .

[55]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[56]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[57]  Bernabé Linares-Barranco,et al.  On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex , 2011, Front. Neurosci..

[58]  Leon O. Chua,et al.  High-performance Viterbi decoder with circularly connected 2-D CNN unilateral cell array , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[59]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[60]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[61]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.