Retrieving Library Functions by Unifying Types Modulo Linear Isomorphism

Cet article presente une nouvelle methode pour la recherche d'une fonction dans une bibliotheque de programmes a partir de son type (au sens de Hindley/Milner). Les methodes utilisees jusqu'ici identifient les types qui sont isomorphiques dans n'importe quelle categorie cartesienne fermee (CCF), et le type resultat est soit isomorphe au type demande, soit en est une generalisation. Il est quelquefois utile d'instancier le type demande, ce qui necessite de resoudre un probleme d'unification modulo isomorphismes. Bien que l'unification modulo CCF-isomorphismes soit indecidable, ce probleme est decidable modulo isomorphismes lineaires, c'est-a-dire isomorphismes dans une categorie monoidale fermee symetrique

[1]  S. Lane Categories for the Working Mathematician , 1971 .

[2]  Colin Runciman,et al.  Retrieving Reusable Software Components by Polymorphic Type , 1991, J. Funct. Program..

[3]  Jeannette M. Wing,et al.  Specifications as Search Keys for Software Libraries , 1991, ICLP.

[4]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[5]  Thomas Johnsson,et al.  The Chalmers Lazy-ML Compiler , 1989, Computer/law journal.

[6]  Richard Morgan Component library retrieval using property models , 1991 .

[7]  Mikael Rittri,et al.  Using types as search keys in function libraries , 1989, Journal of Functional Programming.

[8]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[9]  Richard Statman,et al.  On the unification problem for Cartesian closed categories , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[10]  Mats Carlsson,et al.  FUDGETS: a graphical user interface in a lazy functional language , 1993, FPCA '93.

[11]  Sergei Soloviev A Complete Axiom System for Isomorphism of Types in Closed Categories , 1993, LPAR.

[12]  Jörg H. Siekmann Unification Theory , 1989, J. Symb. Comput..

[13]  Yves Lafont,et al.  The Linear Abstract Machine , 1988, Theor. Comput. Sci..

[14]  Roberto Di Cosmo,et al.  Type isomorphisms in a type-assignment framework , 1992, POPL '92.

[15]  Roberto Di Cosmo,et al.  Provable isomorphisms of types , 1992, Mathematical Structures in Computer Science.

[16]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[17]  Mikael Rittri,et al.  Retrieving Library Identifiers via Equational Matching of Types , 1990, CADE.

[18]  S. Solov′ev The category of finite sets and Cartesian closed categories , 1983 .

[19]  Roland Mittermeir,et al.  Semantic-Based Software Retrieval to Support Rapid Prototyping , 1992, Struct. Program..

[20]  Mikael Rittri,et al.  Using types as search keys in function libraries , 1989, Journal of Functional Programming.

[21]  David A. Basin,et al.  Equality of Terms Containing Associative-Commutative Functions and Commutative Binding Operators in Isomorphism Complete , 1990, CADE.

[22]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .