Retrieving articulated 3-D models using medial surfaces

We consider the use of medial surfaces to represent symmetries of 3-D objects. This allows for a qualitative abstraction based on a directed acyclic graph of components and also a degree of invariance to a variety of transformations including the articulation of parts. We demonstrate the use of this representation for 3-D object model retrieval. Our formulation uses the geometric information associated with each node along with an eigenvalue labeling of the adjacency matrix of the subgraph rooted at that node. We present comparative retrieval results against the techniques of shape distributions (Osada et al.) and harmonic spheres (Kazhdan et al.) on 425 models from the McGill Shape Benchmark, representing 19 object classes. For objects with articulating parts, the precision vs recall curves using our method are consistently above and to the right of those of the other two techniques, demonstrating superior retrieval performance. For objects that are rigid, our method gives results that compare favorably with these methods.

[1]  Robert M. Haralick,et al.  Organization of Relational Models for Scene Analysis , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Kaleem Siddiqi,et al.  Matching Hierarchical Structures Using Association Graphs , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[4]  Benjamin B. Kimia,et al.  Computation of the shock scaffold for unorganized point clouds in 3D , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[5]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  Dietmar Saupe,et al.  3D Model Retrieval with Spherical Harmonics and Moments , 2001, DAGM-Symposium.

[7]  Juan Humberto Sossa Azuela,et al.  Model indexing: the graph-hashing approach , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[9]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[10]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[11]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[13]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark (Figures 1 and 2) , 2004, Shape Modeling International Conference.

[14]  R. Kikinis,et al.  Characterization and recognition of 3D organ shape in medical image analysis using skeletonization , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[15]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor for 3D Models , 2003, Algorithmica.

[16]  Michael Elad,et al.  Content based retrieval of VRML objects: an iterative and interactive approach , 2002 .

[17]  H. Blum Biological shape and visual science (part I) , 1973 .

[18]  Hiroshi Murase,et al.  Learning and recognition of 3D objects from appearance , 1993, [1993] Proceedings IEEE Workshop on Qualitative Vision.

[19]  Kaleem Siddiqi,et al.  Revealing Significant Medial Structure in Polyhedral Meshes , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[20]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[21]  Kim L. Boyer,et al.  Modelbase Partitioning Using Property Matrix Spectra , 1998, Comput. Vis. Image Underst..

[22]  Sven J. Dickinson,et al.  Canonical Skeletons for Shape Matching , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[23]  Kaleem Siddiqi,et al.  Flux invariants for shape , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[24]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[25]  M. Fatih Demirci,et al.  3D object retrieval using many-to-many matching of curve skeletons , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[26]  Gabriella Sanniti di Baja,et al.  Computing skeletons in three dimensions , 1999, Pattern Recognit..

[27]  Hans-Peter Kriegel,et al.  3D Shape Histograms for Similarity Search and Classification in Spatial Databases , 1999, SSD.

[28]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[29]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[30]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[32]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[33]  K. Boyer,et al.  Organizing Large Structural Modelbases , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[35]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[36]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[37]  Ali Shokoufandeh,et al.  Indexing using a spectral encoding of topological structure , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[38]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[39]  Ali Shokoufandeh,et al.  Indexing hierarchical structures using graph spectra , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[41]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[42]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[43]  Günter Rote,et al.  Matching Shapes with a Reference Point , 1997, Int. J. Comput. Geom. Appl..

[44]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[45]  Takeo Kanade,et al.  Automatic generation of object recognition programs , 1988, Proc. IEEE.

[46]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[47]  Ali Shokoufandeh,et al.  On the Representation and Matching of Qualitative Shape at Multiple Scales , 2002, ECCV.

[48]  Sven J. Dickinson,et al.  Learning Hierarchical Shape Models from Examples , 2005, EMMCVPR.

[49]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[50]  James Damon Geometry and Medial Structure , 2008, Medial Representations.

[51]  Steven W. Reyner,et al.  An Analysis of a Good Algorithm for the Subtree Problem , 1977, SIAM J. Comput..

[52]  A. Ben Hamza,et al.  Geodesic Object Representation and Recognition , 2003, DGCI.

[53]  Patrick J. Flynn,et al.  A Survey Of Free-Form Object Representation and Recognition Techniques , 2001, Comput. Vis. Image Underst..

[54]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Sven J. Dickinson,et al.  Generic model abstraction from examples , 2000, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Horst Bunke,et al.  Subgraph Isomorphism in Polynomial Time , 1995 .

[57]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[58]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[59]  Ali Shokoufandeh,et al.  View-based 3-D object recognition using shock graphs , 2002, Object recognition supported by user interaction for service robots.

[60]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[61]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[62]  L KuniiTosiyasu,et al.  Surface Coding Based on Morse Theory , 1991 .

[63]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.