Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.

[1]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[2]  Zhengyuan Tu,et al.  Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. , 2014, Angewandte Chemie.

[3]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[4]  L. Archer,et al.  Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions , 2014 .

[5]  Meiten Koh,et al.  Fluorinated electrolytes for 5 V lithium-ion battery chemistry , 2013 .

[6]  L. Archer,et al.  High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites , 2013 .

[7]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[8]  Kathleen A. Schwarz,et al.  The importance of nonlinear fluid response in joint density-functional theory studies of battery systems , 2013, 1301.6189.

[9]  L. Archer,et al.  Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries , 2012, Advanced materials.

[10]  C. Ling,et al.  Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology , 2012 .

[11]  Jean-Marie Tarascon,et al.  Towards systems materials engineering. , 2012, Nature materials.

[12]  M. Anouti,et al.  Interfacial Properties of LiTFSI and LiPF6-Based Electrolytes in Binary and Ternary Mixtures of Alkylcarbonates on Graphite Electrodes and Celgard Separator , 2012 .

[13]  L. Archer,et al.  Ionic Liquid-Tethered Nanoparticle Suspensions: A Novel Class of Ionogels , 2012 .

[14]  Lynden A. Archer,et al.  Ionic liquid-nanoparticle hybrid electrolytes , 2012 .

[15]  S. Livi,et al.  Hybrid electrolytes , 2012 .

[16]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[17]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[18]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[19]  Lynden A Archer,et al.  Ionic-liquid-tethered nanoparticles: hybrid electrolytes. , 2010, Angewandte Chemie.

[20]  L. Archer,et al.  Nanoscale Organic Hybrid Electrolytes , 2010, Advanced materials.

[21]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[22]  M. Anouti,et al.  Lithium fluoride dissolution equilibria in cyclic alkylcarbonates and water , 2010 .

[23]  A. Stephan,et al.  Nanocomposite Polymer Electrolytes For Lithium Batteries , 2009 .

[24]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[25]  T. Gustafsson,et al.  A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes , 2009 .

[26]  Daniel S. Bridges,et al.  An Introduction to Polymer Physics , 2009 .

[27]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[28]  M. Armand,et al.  Building better batteries , 2008, Nature.

[29]  Yangyi Yang,et al.  Densities and Surface Tensions of Trimethylbenzene + Dimethyl Carbonate or + Diethyl Carbonate at 298.15 K and 313.15 K , 2006 .

[30]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[31]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[32]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[33]  J. Tarascon,et al.  A reversible copper extrusion–insertion electrode for rechargeable Li batteries , 2003, Nature materials.

[34]  T. Matsushima,et al.  Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells , 2003 .

[35]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[36]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[37]  Wolfgang Gindl,et al.  A comparison of different methods to calculate the surface free energy of wood using contact angle measurements , 2001 .

[38]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[39]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[40]  N. Oyama,et al.  Developing stable, low impedance interface between metallic lithium anode and polyacrylonitrile-based polymer gel electrolyte by preliminary voltage cycling , 1999 .

[41]  K. West,et al.  All oxide solid-state lithium-ion cells , 1997 .

[42]  K. Kokko,et al.  First-principles calculations for work function and surface energy of thin lithium films , 1996 .

[43]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[44]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[45]  R. Ansell The chemical and electrochemical stability of beta-alumina , 1986 .

[46]  L. C. Jonghe,et al.  SOME GEOMETRICAL ASPECTS OF BREAKDOWN OF SODIUM BETA ALUMINA , 1979 .

[47]  John R. Van Wazer,et al.  Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates , 1973 .

[48]  M. Salomon Thermodynamics of lithium and potassium iodide in anhydrous propylene carbonate , 1970 .

[49]  W. Zisman INFLUENCE OF CONSTITUTION ON ADHESION , 1963 .