Sensing properties and photochromism of Ag–TiO2 nano-heterostructures

Achieving advanced multifunctional materials displaying several coexisting properties is currently one of the most exciting and innovative research topics. In this study, we report the engineering of a multifunctional material exhibiting, at the same time, tuneable photochromic behaviour and gas-sensing properties for acetone detection. The photochromic property of silver modified (1–10 mol% Ag) titanium dioxide (titania, TiO2) NPs was monitored under consecutive UVA-light exposure times, and the change in colour was thoroughly investigated with both spectroscopic and colourimetric analyses. All Ag modified samples exhibited a significant change in colour and visible spectra after only 15 seconds of exposure, and this increased with further exposure. It was shown that both the silver molar content in the Ag–TiO2 nano-heterostructure, as well as the UVA-light irradiation time, governed the tunability of the photochromic behaviour (the colour changed from pale yellow to dark blue in Ag-modified specimens, while it remained white in unmodified TiO2). The same nano-heterostructures were also tested as sensing materials for resistive metal oxide gas sensors (MOS). These Ag–TiO2 nano-heterostructures proved to be highly sensitive for the detection of acetone vapours at low concentrations (<1 ppm), superior to the best TiO2-based sensors so far reported. This is the first thorough study to qualitatively monitor, in real-time, the growth of Ag0 NPs on a TiO2 matrix, assessing both optical spectroscopy and colourimetric CIEL*a*b* analysis (e.g. what meets the eye), and to also demonstrate the superior acetone gas-sensing properties of such nano-heterostructures.

[1]  Zeng Wen,et al.  Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism , 2010 .

[2]  C. Ni,et al.  Antibacterial properties of silver-doped titania. , 2007, Small.

[3]  I. Reaney,et al.  Dielectric loss caused by oxygen vacancies in titania ceramics , 2009 .

[4]  Tao He,et al.  Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates , 2006 .

[5]  Muralidhar K. Ghantasala,et al.  Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb , 2000 .

[6]  P. Bhattacharyya,et al.  Low temperature acetone sensor based on Sol-gel grown nano TiO2 thin film , 2013, 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN).

[7]  I. Parkin,et al.  The relationship between photocatalytic activity and photochromic state of nanoparticulate silver surface loaded titanium dioxide thin-films. , 2011, Physical chemistry chemical physics : PCCP.

[8]  Pietro Siciliano,et al.  Acetone sensors based on TiO2 nanocrystals modified with tungsten oxide species , 2016 .

[9]  M. Jansen,et al.  Ag2O3, a Novel Binary Silver Oxide , 1985 .

[10]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[11]  Maurizio Martino,et al.  Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation , 2007 .

[12]  Vijay K. Tomer,et al.  Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors , 2016 .

[13]  Da Chen,et al.  Tuning Photoelectrochemical Performances of Ag−TiO2 Nanocomposites via Reduction/Oxidation of Ag , 2008 .

[14]  Jing Bai,et al.  Titanium dioxide nanomaterials for sensor applications. , 2014, Chemical reviews.

[15]  A. Akimov,et al.  Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. , 2013, Chemical reviews.

[16]  H. Ohsaki,et al.  Optical properties of Ag/dielectric-material multilayers , 2004 .

[17]  T. Trindade,et al.  Hybrid nanostructures for SERS: materials development and chemical detection. , 2015, Physical chemistry chemical physics : PCCP.

[18]  D. Roy,et al.  Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol , 2001 .

[19]  Adisorn Tuantranont,et al.  Flame-Made Nb-Doped TiO2 Ethanol and Acetone Sensors , 2011, Sensors.

[20]  Govind,et al.  Selective gas sensing response from different loading of Ag in sol–gel mesoporous titania powders , 2011 .

[21]  J. Veciana,et al.  Old materials with new tricks: multifunctional open-framework materials. , 2007, Chemical Society reviews.

[22]  S. Rahbarpour,et al.  Diode type Ag–TiO2 hydrogen sensors , 2013 .

[23]  P. Scardi,et al.  Whole powder pattern modelling. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[24]  E. J. Mittemeijer,et al.  Diffraction analysis of the microstructure of materials , 2004 .

[25]  Frank C. Hawthorne,et al.  Spectroscopic methods in mineralogy and geology , 1988 .

[26]  J. Labrincha,et al.  Nano-titania doped with europium and neodymium showing simultaneous photoluminescent and photocatalytic behaviour , 2015 .

[27]  Y. Yun,et al.  Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder , 2003 .

[28]  A. B. Jorge,et al.  Influence of sol counter-ions on the visible light induced photocatalytic behaviour of TiO2 nanoparticles , 2014 .

[29]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[30]  Jean-Pierre Jolivet,et al.  Synthesis of brookite TiO2 nanoparticlesby thermolysis of TiCl4 in strongly acidic aqueous media , 2001 .

[31]  G. Caglioti,et al.  ON RESOLUTION AND LUMINOSITY OF A NEUTRON DIFFRACTION SPECTROMETER FOR SINGLE CRYSTAL ANALYSIS , 1960 .

[32]  U. Pal,et al.  Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles , 2009 .

[33]  J. Labrincha,et al.  Silver-Modified Nano-titania as an Antibacterial Agent and Photocatalyst , 2014 .

[34]  T. Seong,et al.  Facile control of C₂H₅OH sensing characteristics by decorating discrete Ag nanoclusters on SnO₂ nanowire networks. , 2011, ACS applied materials & interfaces.

[35]  A. Melvin,et al.  M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces. , 2015, Nanoscale.

[36]  G. A. Lager,et al.  Polyhedral thermal expansion in the TiO 2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature , 1979 .

[37]  Stephen Westland,et al.  Computational Colour Science using MATLAB®: Westland/Computational Colour Science using MATLAB® , 2012 .

[38]  Mark L Brongersma,et al.  Introductory lecture: nanoplasmonics. , 2015, Faraday discussions.

[39]  H. Dürr Perspectives in Photochromism: A Novel System Based on the 1,5-Electrocyclization of Heteroanalogous Pentadienyl Anions† , 1989 .

[40]  Soohyun Kim,et al.  Effects of Functionalization of TiO2 Nanotube Array Sensors with Pd Nanoparticles on Their Selectivity , 2014, Italian National Conference on Sensors.

[41]  R. Dickson,et al.  Photoactivated fluorescence from individual silver nanoclusters. , 2001, Science.

[42]  Francisco Silva,et al.  Risk assessment in a research laboratory during sol–gel synthesis of nano-TiO2 , 2015 .

[43]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[44]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[45]  Z. Wen,et al.  Formaldehyde gas sensing property and mechanism of TiO2–Ag nanocomposite , 2010 .

[46]  Michael K. Seery,et al.  Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis , 2007 .

[47]  Brand Fortner,et al.  Number by colors - a guide to using color to understand technical data , 1996 .

[48]  Xiaobo Chen,et al.  Introduction: titanium dioxide (TiO2) nanomaterials. , 2014, Chemical reviews.

[49]  K. Klabunde,et al.  Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. , 2007, Journal of colloid and interface science.

[50]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[51]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[52]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[53]  A. S. Marfunin Physics of Minerals and Inorganic Materials , 1979 .

[54]  T. Tatsuma,et al.  TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. , 2004, Journal of the American Chemical Society.

[55]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[56]  G. Han,et al.  Effect of Incorporation of Silver on the Electrical Properties of Sol-Gel-Derived Titania Film , 2008 .

[57]  I. Parkin,et al.  An EXAFS study on the photo-assisted growth of silver nanoparticles on titanium dioxide thin-films and the identification of their photochromic states. , 2013, Physical chemistry chemical physics : PCCP.

[58]  Z. Fang,et al.  Substrate-induced interfacial plasmonics for photovoltaic conversion , 2015, Scientific Reports.

[59]  K. Mogensen,et al.  Size-Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution: Monitoring the Onset of Surface Screening Effects , 2014 .

[60]  Y. Hu,et al.  Effect of brookite phase on the anatase–rutile transition in titania nanoparticles , 2003 .

[61]  Brand Fortner,et al.  Number by Colors , 1997, Springer New York.

[62]  M. Leoni,et al.  Cu–TiO2 Hybrid Nanoparticles Exhibiting Tunable Photochromic Behavior , 2015 .

[63]  Shan Gao,et al.  Ag nanoparticles modified TiO2 spherical heterostructures with enhanced gas-sensing performance , 2011 .

[64]  Min Liu,et al.  Hybrid Cu(x)O/TiO₂ nanocomposites as risk-reduction materials in indoor environments. , 2012, ACS nano.

[65]  Peng Wang,et al.  Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. , 2012, Physical chemistry chemical physics : PCCP.

[66]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[67]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[68]  Partha Bhattacharyya,et al.  Operating Temperature, Repeatability, and Selectivity of TiO 2 Nanotube-Based Acetone Sensor: Influence of Pd and Ni Nanoparticle Modifications , 2015, IEEE Transactions on Device and Materials Reliability.

[69]  H. Nagai,et al.  Percolation threshold for electrical resistivity of Ag-nanoparticle/titania composite thin films fabricated using molecular precursor method , 2012, Journal of Materials Science.

[70]  Gu Xu,et al.  Low cost acetone sensors with selectivity over water vapor based on screen printed TiO2 nanoparticles , 2013 .

[71]  Joan Ramon Morante,et al.  Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors , 2004 .

[72]  M. Irie,et al.  Photochromism: Memories and Switches-Introduction. , 2000, Chemical reviews.

[73]  T. He,et al.  Photochromism in transition-metal oxides , 2004 .

[74]  T. Tatsuma,et al.  Switchable rewritability of Ag-TiO2 nanocomposite films with multicolor photochromism. , 2005, Chemical communications.

[75]  Paolo Scardi,et al.  PM2K: a flexible program implementing Whole Powder Pattern Modelling , 2006 .

[76]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[77]  P. Scardi,et al.  Line profile analysis: pattern modelling versus profile fitting , 2006 .

[78]  P. Kamat Dominance of Metal Oxides in the Era of Nanotechnology , 2011 .

[79]  João A. Labrincha,et al.  Sol–gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag- and W/Ag co-doped TiO2 nanopowders , 2013 .

[80]  Akira Fujishima,et al.  Multicolour photochromism of TiO2 films loaded with silver nanoparticles , 2003, Nature materials.

[81]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[82]  M. Wuttig,et al.  Photochromic silver nanoparticles fabricated by sputter deposition , 2005 .