Protecting entanglement from decoherence using weak measurement and quantum measurement reversal

The unavoidable coupling between a quantum state and its environment leads to decoherence. Weak measurements—indirectly observing a quantum state without disturbing it—are now shown to be a useful tool for reducing or even nullifying the effects of decoherence.

[1]  Yong-Su Kim,et al.  Experimental demonstration of decoherence suppression by quantum measurement reversal , 2011, CLEO 2011.

[2]  A. Jordan,et al.  Undoing a weak quantum measurement of a solid-state qubit. , 2006, Physical review letters.

[3]  Yong-Su Kim,et al.  Reversing the weak quantum measurement for a photonic qubit , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[4]  Masato Koashi,et al.  REVERSING MEASUREMENT AND PROBABILISTIC QUANTUM ERROR CORRECTION , 1999 .

[5]  Shih,et al.  New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. , 1988, Physical review letters.

[6]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[7]  Alexander N. Korotkov,et al.  Decoherence suppression by quantum measurement reversal , 2010 .

[8]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[9]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  E. Lucero,et al.  Reversal of the weak measurement of a quantum state in a superconducting phase qubit. , 2008, Physical review letters.

[11]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[12]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[13]  Radim Filip,et al.  Experimental entanglement distillation of mesoscopic quantum states , 2008, 0812.0709.

[14]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[15]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[16]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[17]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[20]  Andrew N. Jordan,et al.  Entanglement genesis under continuous parity measurement , 2008, 0809.3248.

[21]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[22]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[23]  A. Acín,et al.  Secure device-independent quantum key distribution with causally independent measurement devices. , 2010, Nature communications.

[24]  N. Gisin,et al.  Experimental entanglement distillation and ‘hidden’ non-locality , 2001, Nature.

[25]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[26]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[27]  Sabrina Maniscalco,et al.  Protecting entanglement via the quantum Zeno effect. , 2007, Physical review letters.

[28]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.