Somatosensory processing in the human inferior prefrontal cortex.

Three inferior prefrontal regions in the monkey receive afferents from somatosensory cortices: the orbitofrontal cortex (OFC), the ventral area of the principal sulcus, and the anterior frontal operculum. To determine whether these areas show responses to tactile stimuli in humans, we examined data from an ongoing series of PET studies of somatosensory processing. Unlike previous work showing ventral frontal activity to hedonic (pleasant/unpleasant) sensory stimulation, the tactile stimuli used in these studies had a neutral hedonic valence. Our data provide evidence for at least two discrete ventral frontal brain regions responsive to somatosensory stimulation: 1) the posterior inferior frontal gyrus (IFG) and adjacent anterior frontal operculum, and 2) the OFC. The former region (posterior IFG/anterior frontal operculum) may have a more specific role in attending to tactile stimuli.

[1]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[2]  Dani Byrd,et al.  Auditory Selective Attention: An fMRI Investigation , 1996, NeuroImage.

[3]  A. Nobre,et al.  The Large-Scale Neural Network for Spatial Attention Displays Multifunctional Overlap But Differential Asymmetry , 1999, NeuroImage.

[4]  M. Raichle,et al.  Anatomic Localization and Quantitative Analysis of Gradient Refocused Echo-Planar fMRI Susceptibility Artifacts , 1997, NeuroImage.

[5]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[6]  Michael Petrides,et al.  Three-Dimensional Probabilistic Atlas of the Human Orbitofrontal Sulci in Standardized Stereotaxic Space , 2001, NeuroImage.

[7]  M. Raichle,et al.  Localization of a human system for sustained attention by positron emission tomography , 1991, Nature.

[8]  R. Coghill,et al.  Hemispheric lateralization of somatosensory processing. , 2001, Journal of neurophysiology.

[9]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[10]  R. Passingham Visual discrimination learning after selective prefrontal ablations in monkeys (Macaca mulatta). , 1972, Neuropsychologia.

[11]  C. Robinson,et al.  Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis , 1980, The Journal of comparative neurology.

[12]  S. Stone-Elander,et al.  Pain-related cerebral activation is altered by a distracting cognitive task , 2000, Pain.

[13]  K. Carlsson,et al.  Tickling Expectations: Neural Processing in Anticipation of a Sensory Stimulus , 2000, Journal of Cognitive Neuroscience.

[14]  G. Pearsall,et al.  Von Frey's method of measuring pressure sensibility in the hand: an engineering analysis of the Weinstein-Semmes pressure aesthesiometer. , 1978, The Journal of hand surgery.

[15]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[16]  H Burton,et al.  Somatotopographic organization in the second somatosensory area of M. fascicularis , 1980, The Journal of comparative neurology.

[17]  P. Goldman-Rakic,et al.  Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex , 1989, The Journal of comparative neurology.

[18]  J. Pardo,et al.  Aversive gustatory stimulation activates limbic circuits in humans. , 1998, Brain : a journal of neurology.

[19]  N. Costes,et al.  Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. , 1999, Brain : a journal of neurology.

[20]  M Schwaiger,et al.  Processing of histamine-induced itch in the human cerebral cortex: a correlation analysis with dermal reactions. , 2000, The Journal of investigative dermatology.

[21]  E. Reiman,et al.  Thermosensory activation of insular cortex , 2000, Nature Neuroscience.

[22]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[23]  G. Ettlinger,et al.  Tactile discrimination learning after selective prefrontal ablations in monkeys (Macaca mulatta). , 1972, Neuropsychologia.

[24]  K. Akert,et al.  Insular and opercular cortex and its thalamic projection in Macaca mulatta. , 1963, Schweizer Archiv fur Neurologie, Neurochirurgie und Psychiatrie = Archives suisses de neurologie, neurochirurgie et de psychiatrie.

[25]  R. Koeppe,et al.  Anatomic standardization: linear scaling and nonlinear warping of functional brain images. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[26]  P. B. Cipolloni,et al.  Cortical connections of the frontoparietal opercular areas in the Rhesus monkey , 1999, The Journal of comparative neurology.

[27]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[28]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[29]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[30]  Juha Virtanen,et al.  Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging , 1999, Human brain mapping.

[31]  P. Roland Somatosensory detection in patients with circumscribed lesions of the brain , 2004, Experimental Brain Research.

[32]  E. Rolls,et al.  The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. , 1999, Neuroreport.

[33]  E T Rolls,et al.  Responses to the Sensory Properties of Fat of Neurons in the Primate Orbitofrontal Cortex , 1999, The Journal of Neuroscience.

[34]  M. Mesulam Attentional networks, confusional states, and neglect syndromes. , 2000 .

[35]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[36]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[37]  J. Pardo,et al.  iiV: A Java-based internet image viewer , 2000, NeuroImage.

[38]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .