A class of Finsler metrics admitting first integrals
暂无分享,去创建一个
[1] Z. Shen. Differential Geometry of Spray and Finsler Spaces , 2001 .
[2] R. Ruggiero,et al. A first integral for ^{∞}, k-basic Finsler surfaces and applications to rigidity , 2016 .
[3] J. B. Gomes,et al. Gromov-hyperbolicity and transitivity of geodesic flows in n-dimensional Finsler manifolds , 2020 .
[4] X. Mo. On the non-Riemannian quantity H of a Finsler metric ☆ , 2009 .
[5] 松本 誠. Foundations of Finsler geometry and special Finsler spaces , 1986 .
[6] A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold , 2007, math/0702383.
[7] Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations , 2009, 0903.1169.
[8] Zhongmin Shen. On Some Non-Riemannian Quantities in Finsler Geometry , 2013, Canadian Mathematical Bulletin.
[9] Z. Shen,et al. Ricci Curvature Tensor and Non-Riemannian Quantities , 2015, Canadian Mathematical Bulletin.
[10] Metric nonlinear connections , 2004, math/0412109.
[11] V. Matveev,et al. Geodesic Equivalence via Integrability , 2003 .
[12] Z. Shen. On sprays with vanishing χ-curvature , 2020, International Journal of Mathematics.
[13] M. Crampin,et al. A class of recursion operators on a tangent bundle , 2006 .
[14] L. Berwald. On Finsler and Cartan Geometries. III: Two-Dimensional Finsler Spaces with Rectilinear Extremals , 1941 .
[15] Joseph Grifone,et al. Structure presque tangente et connexions I , 1972 .
[16] V. Matveev. GEOMETRIC EXPLANATION OF THE BELTRAMI THEOREM , 2006 .
[17] Generalized Helmholtz Conditions for Non-Conservative Lagrangian Systems , 2014, 1409.4895.
[18] H. Rund. The Differential Geometry of Finsler Spaces , 1959 .
[19] Z. Muzsnay,et al. Variational Principles for Second Order Differential Equations: Application of the Spencer Theory to Characterize Variational Sprays , 2000 .