A class of Finsler metrics admitting first integrals

Abstract We use two non-Riemannian curvature tensors, the χ-curvature and the mean Berwald curvature to characterise a class of Finsler metrics admitting first integrals. This class includes Finsler metrics of scalar flag curvature.

[1]  Z. Shen Differential Geometry of Spray and Finsler Spaces , 2001 .

[2]  R. Ruggiero,et al.  A first integral for ^{∞}, k-basic Finsler surfaces and applications to rigidity , 2016 .

[3]  J. B. Gomes,et al.  Gromov-hyperbolicity and transitivity of geodesic flows in n-dimensional Finsler manifolds , 2020 .

[4]  X. Mo On the non-Riemannian quantity H of a Finsler metric ☆ , 2009 .

[5]  松本 誠 Foundations of Finsler geometry and special Finsler spaces , 1986 .

[6]  A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold , 2007, math/0702383.

[7]  Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations , 2009, 0903.1169.

[8]  Zhongmin Shen On Some Non-Riemannian Quantities in Finsler Geometry , 2013, Canadian Mathematical Bulletin.

[9]  Z. Shen,et al.  Ricci Curvature Tensor and Non-Riemannian Quantities , 2015, Canadian Mathematical Bulletin.

[10]  Metric nonlinear connections , 2004, math/0412109.

[11]  V. Matveev,et al.  Geodesic Equivalence via Integrability , 2003 .

[12]  Z. Shen On sprays with vanishing χ-curvature , 2020, International Journal of Mathematics.

[13]  M. Crampin,et al.  A class of recursion operators on a tangent bundle , 2006 .

[14]  L. Berwald On Finsler and Cartan Geometries. III: Two-Dimensional Finsler Spaces with Rectilinear Extremals , 1941 .

[15]  Joseph Grifone,et al.  Structure presque tangente et connexions I , 1972 .

[16]  V. Matveev GEOMETRIC EXPLANATION OF THE BELTRAMI THEOREM , 2006 .

[17]  Generalized Helmholtz Conditions for Non-Conservative Lagrangian Systems , 2014, 1409.4895.

[18]  H. Rund The Differential Geometry of Finsler Spaces , 1959 .

[19]  Z. Muzsnay,et al.  Variational Principles for Second Order Differential Equations: Application of the Spencer Theory to Characterize Variational Sprays , 2000 .