Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach

The recent progress of spatial econometrics has developed a new technique called the “spatial hedonic approach,” which considers the elements of spatial autocorrelation among property values and geographically distributed attributes. The practical difficulties in applying spatial econometric models include the specification of the spatial weight matrix (SWM), which affects the final analysis results. Some simulation studies suggest that information criteria such as AIC are useful for the SWM's selection, but if many model candidates exist (e.g., when the selections of explanatory variables are performed simultaneously), then the computational burden of calculating such criteria for each model is large. The present study develops an automatic model selection algorithm using the technique of reversible jump MCMC combined with simulated annealing; termed trans-dimensional simulated annealing (TDSA). The performance of the TDSA algorithm is verified using the well-known Boston housing dataset, and it is applied empirically to a Japanese real estate dataset. The obtained results suggest a two-step strategy for model selection, with SWM (W) first, followed by the explanatory variables (X and WX), will result in local optima, and therefore these variables should be selected simultaneously. The TDSA algorithm can find the significant variables that are “hidden” because of multicollinearity in the unrestricted model, and can attain the minimum AIC automatically.

[1]  Simon Jackman,et al.  Bayesian Analysis for the Social Sciences , 2009 .

[2]  Keming Yu,et al.  Bayesian Mode Regression , 2012, 1208.0579.

[3]  Otis W. Gilley,et al.  On the Harrison and Rubinfeld Data , 1996 .

[4]  Jesús Mur,et al.  Model selection strategies in a spatial setting: Some additional results , 2009 .

[5]  James P. LeSage,et al.  Incorporating Transportation Network Structure in Spatial Econometric Models of Commodity Flows , 2006 .

[6]  Johannes Rincke,et al.  A commuting-based refinement of the contiguity matrix for spatial models, and an application to local police expenditures , 2010 .

[7]  Raymond J.G.M. Florax,et al.  Specification and estimation of spatial linear regression models: Monte Carlo evaluation of pre-test estimators , 1992 .

[8]  Gianfranco Piras,et al.  Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes , 2014 .

[9]  Esteban Fernández-Vázquez,et al.  Estimating Spatial Autoregressive Models by GME-GCE Techniques , 2009 .

[10]  Harry H. Kelejian,et al.  HAC estimation in a spatial framework , 2007 .

[11]  James P. LeSage,et al.  Models for Spatially Dependent Missing Data , 2004 .

[12]  Jan R. Magnus,et al.  A comparison of two model averaging techniques with an application to growth empirics , 2010 .

[13]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[14]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[15]  Aysegul Can Specification and estimation of hedonic housing price models , 1992 .

[16]  Hajime Wago,et al.  Small-sample Properties of Panel Spatial Autoregressive Models: Comparison of the Bayesian and Maximum Likelihood Methods , 2008 .

[17]  J. Ord,et al.  Local Spatial Autocorrelation Statistics: Distributional Issues and an Application , 2010 .

[18]  D. Fouskakis,et al.  Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods , 2012, Eur. J. Oper. Res..

[19]  J. LeSage Bayesian Estimation of Spatial Autoregressive Models , 1997 .

[20]  Duc Truong Pham,et al.  Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks , 2011 .

[21]  Lung-fei Lee,et al.  GMM and 2SLS estimation of mixed regressive, spatial autoregressive models , 2007 .

[22]  John B. Loomis,et al.  Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses , 2010 .

[23]  H. Kelejian,et al.  A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances , 1998 .

[24]  D. McMillen,et al.  Perspectives on Spatial Econometrics: Linear Smoothing with Structured Models , 2012 .

[25]  Hajime Seya,et al.  Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits , 2009, J. Geogr. Syst..

[26]  S. Brooks,et al.  Classical model selection via simulated annealing , 2003, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[27]  J. LeSage,et al.  Bayesian Model Averaging for Spatial Econometric Models , 2005 .

[28]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[29]  Aysegul Can The Measurement of Neighborhood Dynamics in Urban House Prices , 1990 .

[30]  B. M. Pötscher,et al.  MODEL SELECTION AND INFERENCE: FACTS AND FICTION , 2005, Econometric Theory.

[31]  Harry H. Kelejian,et al.  A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model , 1999 .

[32]  Bernard Fingleton Spatial Autoregression: Spatial Autoregression , 2009 .

[33]  Gianfranco Piras,et al.  Spatial J-test: some Monte Carlo evidence , 2012, Stat. Comput..

[34]  N. Hjort,et al.  Comprar Model Selection and Model Averaging | Gerda Claeskens | 9780521852258 | Cambridge University Press , 2008 .

[35]  Luc Anselin,et al.  Under the hood , 2002 .

[36]  D. Griffith Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through Theory and Scientific Visualization , 2010 .

[37]  Justin M. Ross,et al.  Revealed Preference for Relative Status: Evidence from the Housing Market , 2012 .

[38]  Hajime Seya,et al.  Measuring the impact of large‐scale transportation projects on land price using spatial statistical models* , 2008 .

[39]  S. Brooks,et al.  Optimization Using Simulated Annealing , 1995 .

[40]  J. LeSage,et al.  Spatial Growth Regressions: Model Specification, Estimation and Interpretation , 2007 .

[41]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[42]  A. Getis,et al.  Using AMOEBA to Create a Spatial Weights Matrix and Identify Spatial Clusters , 2006 .

[43]  Jesús Mur,et al.  Deriving the W-matrix via p-median complete correlation analysis of residuals , 2011 .

[44]  Otis W. Gilley,et al.  Using the Spatial Configuration of the Data to Improve Estimation , 1997 .

[45]  Martin Feldkircher,et al.  Spatial filtering, model uncertainty and the speed of income convergence in Europe , 2013 .

[46]  Julia Koschinsky,et al.  The welfare benefit of a home’s location: an empirical comparison of spatial and non-spatial model estimates , 2012, J. Geogr. Syst..

[47]  Gianfranco Piras,et al.  An extension of Kelejian's J-test for non-nested spatial models , 2011 .

[48]  Robert Haining,et al.  SPATIAL MODELS AND REGIONAL SCIENCE: A COMMENT ON ANSELIN'S PAPER AND RESEARCH DIRECTIONS , 1986 .

[49]  Lw Hepple,et al.  Bayesian Techniques in Spatial and Network Econometrics: 1. Model Comparison and Posterior Odds , 1995 .

[50]  Richard D. F. Harris,et al.  In Search of ‘W’ , 2011 .

[51]  Daniel A. Griffith,et al.  Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach , 2007 .

[52]  Luc Anselin,et al.  Thirty years of spatial econometrics , 2010 .

[53]  R. Dubin Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms , 1988 .

[54]  Luc Anselin,et al.  NON‐NESTED TESTS ON THE WEIGHT STRUCTURE IN SPATIAL AUTOREGRESSIVE MODELS: SOME MONTE CARLO RESULTS* , 1986 .

[55]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[56]  Lw Hepple,et al.  Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms , 1995 .

[57]  Jennifer A. Hoeting,et al.  Bayesian Multimodel Inference for Geostatistical Regression Models , 2011, PloS one.

[58]  M. Clyde,et al.  Bayesian model averaging: A tutorial - Comment , 1999 .

[59]  Linda Gerkman Empirical spatial econometric modelling of small scale neighbourhood , 2012, J. Geogr. Syst..

[60]  G. Arbia Spatial Econometrics , 2006, Encyclopedia of Big Data.

[61]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[62]  Harry H. Kelejian,et al.  A spatial J-test for model specification against a single or a set of non-nested alternatives , 2008 .

[63]  Johan H. L. Oud,et al.  How to Get Rid of W: A Latent Variables Approach to Modelling Spatially Lagged Variables , 2008 .

[64]  Tony E. Smith,et al.  Estimation Bias in Spatial Models with Strongly Connected Weight Matrices , 2009 .

[65]  Yoshiki Yamagata,et al.  Income convergence in Japan: A Bayesian spatial Durbin model approach , 2012 .

[66]  David M. Brasington,et al.  Demand for Environmental Quality: A Spatial Hedonic Analysis , 2005 .

[67]  Peter M. Robinson,et al.  Developments in the Analysis of Spatial Data , 2008 .

[68]  Arnab Bhattacharjee,et al.  Estimation of spatial weights matrix in a spatial error model, with an application to diffusion in housing demand , 2005 .

[69]  Lung-fei Lee,et al.  Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models , 2004 .

[70]  J. LeSage Introduction to spatial econometrics , 2009 .

[71]  Roger Th. A. J. Leenders,et al.  Modeling social influence through network autocorrelation: constructing the weight matrix , 2002, Soc. Networks.

[72]  J. Paul Elhorst,et al.  Applied Spatial Econometrics: Raising the Bar , 2010 .

[73]  Pierluigi Coppola,et al.  Modelling transport and real-estate values interactions in urban systems , 2012 .

[74]  Robert J. Shiller,et al.  Macro Markets: Creating Institutions for Managing Society's Largest Economic Risks , 1995 .

[75]  C. Manski Identification of Endogenous Social Effects: The Reflection Problem , 1993 .

[76]  H. Kelejian,et al.  Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances , 2008, Journal of econometrics.

[77]  Tammo H. A. Bijmolt,et al.  Specification of spatial models: A simulation study on weights matrices , 2009 .

[78]  James P. LeSage,et al.  Pitfalls in Higher Order Model Extensions of Basic Spatial Regression Methodology , 2011 .

[79]  Kitagawa Genshiro,et al.  Information criteria for the predictive evaluation of bayesian models , 1997 .

[80]  James P. LeSage,et al.  Spatial Statistics and Real Estate , 2004 .

[81]  A. Getis,et al.  Constructing the Spatial Weights Matrix Using a Local Statistic , 2004 .

[82]  Phillip Kostov,et al.  Model Boosting for Spatial Weighting Matrix Selection in Spatial Lag Models , 2010 .

[83]  S. Godsill On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .

[84]  George Kapetanios,et al.  Variable selection in regression models using nonstandard optimisation of information criteria , 2007, Comput. Stat. Data Anal..

[85]  G. V. van Kooten,et al.  Bayesian Model Averaging in the Context of Spatial Hedonic Pricing: An Application to Farmland Values , 2011 .

[86]  Luc Anselin,et al.  Spatial Hedonic Models , 2009 .

[87]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[88]  J. Besag A candidate's formula: A curious result in Bayesian prediction , 1989 .

[89]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .