Fuel-Cell Catalyst-Layer Resistance via Hydrogen Limiting-Current Measurements

Author(s): Schuler, T; Chowdhury, A; Freiberg, AT; Sneed, B; Spingler, FB; Tucker, MC; More, KL; Radke, CJ; Weber, AZ | Abstract: © The Author(s) 2019. Published by ECS. Significant mass-transport resistances in polymer-electrolyte-fuel-cell catalyst layers (CLs) impose a lower limit on Pt-loading levels, hindering wide-spread fuel-cell commercialization. The origin of this resistance remains unclear. Minimization of CL mass-transport resistance is imperative to achieve better CL design and performance. In this paper, an operando method based on H2 limiting current is used to characterize and quantify CL resistance in traditional porous Pt/carbon-based electrodes. CL sub-resistances are isolated using continuum multiscale modeling and experiments, investigating the effects of reactant molecular weight, pressure, and ionomer to carbon weight ratio. The results expose CL resistance including both interfacial and transport components, although the majority of the CL resistance is ascribed to a local resistance close to the Pt reaction sites, which includes interfacial resistance and local transport resistance. Variations in temperature, humidity, and primary particle loading (Pt:C ratio) highlight the impact of operating conditions and CL design parameters on CL sub-resistances. The observed trends guide optimization of CL design to achieve novel low-loaded fuel-cell electrodes.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Sarah A. Berlinger,et al.  Inherent Acidity of Perfluorosulfonic Acid Ionomer Dispersions and Implications for Ink Aggregation. , 2018, The journal of physical chemistry. B.

[3]  W. Gu,et al.  Boosting Fuel Cell Performance with Accessible Carbon Mesopores , 2018 .

[4]  D. Muller,et al.  Editors' Choice—Connecting Fuel Cell Catalyst Nanostructure and Accessibility Using Quantitative Cryo-STEM Tomography , 2018 .

[5]  Sarah A. Berlinger,et al.  Understanding inks for porous-electrode formation , 2017 .

[6]  K. Karan PEFC catalyst layer: Recent advances in materials, microstructural characterization, and modeling , 2017 .

[7]  C. Radke,et al.  Transport Resistances in Fuel-Cell Catalyst Layers , 2017 .

[8]  A. Weber,et al.  Polarization loss correction derived from hydrogen local-resistance measurement in low Pt-loaded polymer-electrolyte fuel cells , 2017 .

[9]  A. Weber,et al.  Investigating fuel-cell transport limitations using hydrogen limiting current , 2017 .

[10]  Vincent De Andrade,et al.  Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes , 2017 .

[11]  A. Weber,et al.  New Insights into Perfluorinated Sulfonic-Acid Ionomers. , 2017, Chemical reviews.

[12]  A. Putz,et al.  Analysis of Catalyst Layer Microstructures: From Imaging to Performance , 2016 .

[13]  T. Morawietz,et al.  Quantitative in Situ Analysis of Ionomer Structure in Fuel Cell Catalytic Layers. , 2016, ACS applied materials & interfaces.

[14]  K. Kudo,et al.  Humidity and Temperature Dependences of Oxygen Transport Resistance of Nafion Thin Film on Platinum Electrode , 2016 .

[15]  Thomas J. Dursch,et al.  Nanostructure/Swelling Relationships of Bulk and Thin‐Film PFSA Ionomers , 2016 .

[16]  Anusorn Kongkanand,et al.  The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. , 2016, The journal of physical chemistry letters.

[17]  K. Kudo,et al.  Molecular Dynamics Simulations on O2 Permeation through Nafion Ionomer on Platinum Surface , 2016 .

[18]  M. Secanell,et al.  Analysis of Inkjet Printed PEFC Electrodes with Varying Platinum Loading , 2016 .

[19]  D. Stolten,et al.  Gas Permeation through Nafion. Part 1: Measurements , 2015 .

[20]  S. Litster,et al.  Gas Transport Resistance in Polymer Electrolyte Thin Films on Oxygen Reduction Reaction Catalysts. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[21]  Jason W. Zack,et al.  Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness , 2015 .

[22]  A. Morin,et al.  Three-dimensional analysis of Nafion layers in fuel cell electrodes , 2014, Nature Communications.

[23]  A. Weber,et al.  Unexplained transport resistances for low-loaded fuel-cell catalyst layers , 2014 .

[24]  H. Gasteiger,et al.  New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism , 2014 .

[25]  R. J. Kline,et al.  Confinement-driven increase in ionomer thin-film modulus. , 2014, Nano letters.

[26]  Ahmet Kusoglu,et al.  A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells , 2014 .

[27]  K. Karan,et al.  Proton Transport Property in Supported Nafion Nanothin Films by Electrochemical Impedance Spectroscopy , 2014 .

[28]  R. Jinnouchi,et al.  Catalyst Poisoning Property of Sulfonimide Acid Ionomer on Pt (111) Surface , 2013 .

[29]  A. Hitchcock,et al.  3D Chemical Mapping of PEM Fuel Cell Cathodes by Scanning Transmission Soft X-ray Spectro-Tomography , 2013 .

[30]  K. Kudo,et al.  Analysis of Oxygen Transport Resistance of Nafion Thin Film on Pt Electrode , 2013 .

[31]  A. Ohma,et al.  An in situ technique for analyzing ionomer coverage in catalyst layers , 2013 .

[32]  K. Karan,et al.  Self-Assembly and Transport Limitations in Confined Nafion Films , 2013 .

[33]  K. Kudo,et al.  Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell , 2013 .

[34]  K. Shinohara,et al.  Influence of Equivalent Weight of Ionomer on Local Oxygen Transport Resistance in Cathode Catalyst Layers , 2013 .

[35]  K. Yager,et al.  Effect of Confinement on Structure, Water Solubility, and Water Transport in Nafion Thin Films , 2012 .

[36]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[37]  Wenbin Gu,et al.  Impact of Platinum Loading and Catalyst Layer Structure on PEMFC Performance , 2012 .

[38]  A. Hexemer,et al.  Controlling Nafion Structure and Properties via Wetting Interactions , 2012 .

[39]  A. Weber,et al.  Effective-Diffusivity Measurement of Partially-Saturated Fuel-Cell Gas-Diffusion Layers , 2012 .

[40]  Ahmet Kusoglu,et al.  Water Uptake of Fuel-Cell Catalyst Layers , 2012 .

[41]  P. Sinha,et al.  The Impact of Platinum Loading on Oxygen Transport Resistance , 2012 .

[42]  Anusorn Kongkanand,et al.  Improving Operational Robustness of NSTF Electrodes in PEM Fuel Cells , 2012 .

[43]  A. Weber,et al.  Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers , 2011 .

[44]  A. Weber,et al.  Analysis of Oxygen-Transport Diffusion Resistance in Proton-Exchange-Membrane Fuel Cells , 2011 .

[45]  O. Konovalov,et al.  Surface-Induced Micelle Orientation in Nafion Films , 2011 .

[46]  F. Maillard,et al.  Influence of size on the electrocatalytic activities of supported metal nanoparticles in fuel cells related reactions , 2010 .

[47]  N. Marković,et al.  Oxygen reduction reaction at three-phase interfaces. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  Oleg Konovalov,et al.  Surface structure of Nafion in vapor and liquid. , 2010, The journal of physical chemistry. B.

[49]  Kazuhiko Shinohara,et al.  Analysis of Reactant Gas Transport in Catalyst Layers; Effect of Pt-loadings , 2009 .

[50]  K. Neyerlin,et al.  Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods , 2009 .

[51]  D. Baker,et al.  Heat and Water Transport in Hydrophobic Diffusion Media , 2009 .

[52]  K. Yasuda,et al.  Depression of proton conductivity in recast Nafion® film measured on flat substrate , 2009 .

[53]  Mohammad Faghri,et al.  Transport Phenomena in Fires , 2007 .

[54]  K. Shinohara,et al.  Analysis of Reactant Gas Transport in a Catalyst Layer , 2007 .

[55]  R. Borup,et al.  Identifying Contributing Degradation Phenomena in PEM Fuel Cell Membrane Electride Assemblies Via Electron Microscopy , 2006 .

[56]  U. Beuscher Experimental Method to Determine the Mass Transport Resistance of a Polymer Electrolyte Fuel Cell , 2006 .

[57]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[58]  Karren L. More,et al.  Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions , 2005 .

[59]  Göran Sundholm,et al.  In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectrode , 2002 .

[60]  Hubert A. Gasteiger,et al.  The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions , 2001 .

[61]  P. Ekdunge,et al.  Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell , 1997 .

[62]  W. Wen,et al.  Solubilities of hydrogen and deuterium gases in water and their isotope fractionation factor , 1978 .

[63]  J. Beenakker,et al.  The Lennard-Jones 6–12 potential parameters of H2 and D2 , 1961 .

[64]  W. G. Pollard,et al.  On Gaseous Self-Diffusion in Long Capillary Tubes , 1948 .