On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree

In this contribution the isolation of real roots and the computation of the topological degree in two dimensions are considered and their complexity is analyzed. In particular, we apply Stenger's degree computational method by splitting properly the boundary of the given region to obtain a sequence of subintervals along the boundary that forms a sufficient refinement. To this end, we properly approximate the function using univariate polynomials. Then we isolate each one of the zeros of these polynomials on the boundary of the given region in various subintervals so that these subintervals form a sufficiently refined boundary.

[1]  M. Stynes,et al.  An algorithm for the numerical calculation of the degree of a mapping. , 1977 .

[2]  K. Sikorski A three-dimensional analogue to the method of bisections for solving nonlinear equations , 1979 .

[3]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[4]  J. W. Thomas,et al.  The Calculation of the Topological Degree by Quadrature , 1975 .

[5]  Michael N. Vrahatis,et al.  Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2001 .

[6]  Michael N. Vrahatis,et al.  Structure and Breakdown of Invariant Tori in a 4-D Mapping Model of Accelerator Dynamics , 1997 .

[7]  K. A. Stroud,et al.  Theory of Equations Part 1 , 1986 .

[8]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[9]  Terrance E. Boult,et al.  Complexity of computing topological degree of lipschitz functions in n dimensions , 1986, J. Complex..

[10]  W. B. Gearhart,et al.  Deflation techniques for the calculation of further solutions of a nonlinear system , 1971 .

[11]  K. Sikorski Bisection is optimal , 1982 .

[12]  Kris Sikorski,et al.  A bisection method for systems of nonlinear equations , 1984, TOMS.

[13]  Émile Picard Traité d'analyse , 2013 .

[14]  Denis Marchepoil Contribution à la modélisation géométrique : Equations algébriques, modeleur, lancer de rayons et parallélisme , 1994 .

[15]  Michael N. Vrahatis,et al.  Solving systems of nonlinear equations using the nonzero value of the topological degree , 1988, TOMS.

[16]  Cornelis H. Slump,et al.  The determination of the location of the global maximum of a function in the presence of several local extrema , 1985, IEEE Trans. Inf. Theory.

[17]  Michael N. Vrahatis,et al.  RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions , 1995 .

[18]  Michael N. Vrahatis,et al.  A short proof and a generalization of Miranda’s existence theorem , 1989 .

[19]  Baker Kearfott,et al.  An efficient degree-computation method for a generalized method of bisection , 1979 .

[20]  Michael N. Vrahatis,et al.  The topological degree theory for the localization and computation of complex zeros of bessel functions , 1997 .

[21]  J. Garlo,et al.  The Bernstein Algorithm , 1994 .

[22]  Michael N. Vrahatis,et al.  Locating and Computing All the Simple Roots and Extrema of a Function , 1996, SIAM J. Sci. Comput..

[23]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[24]  Martin Stynes On the construction of sufficient refinements for computation of topological degree , 1981 .

[25]  Terrance E. Boult,et al.  An Optimal Complexity Algorithm for Computing the Topological Degree in Two Dimensions , 1989 .

[26]  Michael N. Vrahatis,et al.  PERIODIC ORBITS AND INVARIANT SURFACES OF 4D NONLINEAR MAPPINGS , 1996 .

[27]  A. Neumaier,et al.  Interval Slopes for Rational Functions and Associated Centered Forms , 1985 .

[28]  Michael N. Vrahatis,et al.  Locating and Computing Arbitrarily Distributed Zeros , 1999, SIAM J. Sci. Comput..

[29]  Arnold Neumaier,et al.  Existence Verification for Singular Zeros of Complex Nonlinear Systems , 2000, SIAM J. Numer. Anal..

[30]  Michael N. Vrahatis,et al.  On the Localization and Computation of Zeros of Bessel Functions , 1997 .

[31]  K. Sikorski,et al.  Asymptotic near optimality of the bisection method , 1990 .

[32]  Michael N. Vrahatis,et al.  An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .

[33]  C. Micchelli Mathematical aspects of geometric modeling , 1987 .

[34]  Emile Picard Sur le nombre des racines communes à plusieurs équations simultanées , 1889 .

[35]  Frank Stenger,et al.  A two-dimensional analogue to the method of bisections for solving nonlinear equations , 1976 .

[36]  Misako Yokoyama Computing the Topological Degree with Noisy Information , 1997, J. Complex..

[37]  Christopher A. Sikorski Optimal solution of nonlinear equations , 1985, J. Complex..

[38]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[39]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[40]  Frank Stenger,et al.  Computing the topological degree of a mapping inRn , 1975 .

[41]  Wladyslaw Kulpa,et al.  THE POINCARE-MIRANDA THEOREM , 1997 .

[42]  Michael N. Vrahatis,et al.  ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument , 1998 .

[43]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[44]  J. Cronin Fixed points and topological degree in nonlinear analysis , 1995 .

[45]  Oliver Aberth Computation of topological degree using interval arithmetic, and applications , 1994 .

[46]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .

[47]  W. Burnside,et al.  Theory of equations , 1886 .

[48]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[49]  Martin Stynes,et al.  An algorithm for numerical calculation of topological degree , 1979 .

[50]  Vassilis P. Plagianakos,et al.  Locating and computing in parallel all the simple roots of special functions using PVM , 2001 .

[51]  Ralph Baker Kearfott Computing the degree of maps and a generalized method of bisection , 1977 .

[52]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[53]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[54]  R. Baker Kearfott,et al.  Some tests of generalized bisection , 1987, TOMS.

[55]  M N Vrahatis,et al.  A rapid Generalized Method of Bisection for solving Systems of Non-linear Equations , 1986 .

[56]  Eldon Hansen Computing Zeros of Functions Using Generalized Interval Arithmetic , 1994 .

[57]  Michael N. Vrahatis,et al.  Locating and Computing Zeros of Airy Functions , 1996 .

[58]  A. Neumaier Interval methods for systems of equations , 1990 .

[59]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[60]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[61]  Michael N. Vrahatis,et al.  Algorithm 666: Chabis: a mathematical software package for locating and evaluating roots of systems of nonlinear equations , 1988, TOMS.

[62]  M. N. Vrahatisa,et al.  Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2000 .