On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree
暂无分享,去创建一个
Michael N. Vrahatis | Bernard Mourrain | Jean-Claude Yakoubsohn | M. N. Vrahatis | B. Mourrain | Jean-Claude Yakoubsohn | M. Vrahatis
[1] M. Stynes,et al. An algorithm for the numerical calculation of the degree of a mapping. , 1977 .
[2] K. Sikorski. A three-dimensional analogue to the method of bisections for solving nonlinear equations , 1979 .
[3] T. A. Brown,et al. Theory of Equations. , 1950, The Mathematical Gazette.
[4] J. W. Thomas,et al. The Calculation of the Topological Degree by Quadrature , 1975 .
[5] Michael N. Vrahatis,et al. Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2001 .
[6] Michael N. Vrahatis,et al. Structure and Breakdown of Invariant Tori in a 4-D Mapping Model of Accelerator Dynamics , 1997 .
[7] K. A. Stroud,et al. Theory of Equations Part 1 , 1986 .
[8] E. Allgower,et al. Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .
[9] Terrance E. Boult,et al. Complexity of computing topological degree of lipschitz functions in n dimensions , 1986, J. Complex..
[10] W. B. Gearhart,et al. Deflation techniques for the calculation of further solutions of a nonlinear system , 1971 .
[11] K. Sikorski. Bisection is optimal , 1982 .
[12] Kris Sikorski,et al. A bisection method for systems of nonlinear equations , 1984, TOMS.
[13] Émile Picard. Traité d'analyse , 2013 .
[14] Denis Marchepoil. Contribution à la modélisation géométrique : Equations algébriques, modeleur, lancer de rayons et parallélisme , 1994 .
[15] Michael N. Vrahatis,et al. Solving systems of nonlinear equations using the nonzero value of the topological degree , 1988, TOMS.
[16] Cornelis H. Slump,et al. The determination of the location of the global maximum of a function in the presence of several local extrema , 1985, IEEE Trans. Inf. Theory.
[17] Michael N. Vrahatis,et al. RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions , 1995 .
[18] Michael N. Vrahatis,et al. A short proof and a generalization of Miranda’s existence theorem , 1989 .
[19] Baker Kearfott,et al. An efficient degree-computation method for a generalized method of bisection , 1979 .
[20] Michael N. Vrahatis,et al. The topological degree theory for the localization and computation of complex zeros of bessel functions , 1997 .
[21] J. Garlo,et al. The Bernstein Algorithm , 1994 .
[22] Michael N. Vrahatis,et al. Locating and Computing All the Simple Roots and Extrema of a Function , 1996, SIAM J. Sci. Comput..
[23] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[24] Martin Stynes. On the construction of sufficient refinements for computation of topological degree , 1981 .
[25] Terrance E. Boult,et al. An Optimal Complexity Algorithm for Computing the Topological Degree in Two Dimensions , 1989 .
[26] Michael N. Vrahatis,et al. PERIODIC ORBITS AND INVARIANT SURFACES OF 4D NONLINEAR MAPPINGS , 1996 .
[27] A. Neumaier,et al. Interval Slopes for Rational Functions and Associated Centered Forms , 1985 .
[28] Michael N. Vrahatis,et al. Locating and Computing Arbitrarily Distributed Zeros , 1999, SIAM J. Sci. Comput..
[29] Arnold Neumaier,et al. Existence Verification for Singular Zeros of Complex Nonlinear Systems , 2000, SIAM J. Numer. Anal..
[30] Michael N. Vrahatis,et al. On the Localization and Computation of Zeros of Bessel Functions , 1997 .
[31] K. Sikorski,et al. Asymptotic near optimality of the bisection method , 1990 .
[32] Michael N. Vrahatis,et al. An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .
[33] C. Micchelli. Mathematical aspects of geometric modeling , 1987 .
[34] Emile Picard. Sur le nombre des racines communes à plusieurs équations simultanées , 1889 .
[35] Frank Stenger,et al. A two-dimensional analogue to the method of bisections for solving nonlinear equations , 1976 .
[36] Misako Yokoyama. Computing the Topological Degree with Noisy Information , 1997, J. Complex..
[37] Christopher A. Sikorski. Optimal solution of nonlinear equations , 1985, J. Complex..
[38] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[39] Fujio Yamaguchi,et al. Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.
[40] Frank Stenger,et al. Computing the topological degree of a mapping inRn , 1975 .
[41] Wladyslaw Kulpa,et al. THE POINCARE-MIRANDA THEOREM , 1997 .
[42] Michael N. Vrahatis,et al. ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument , 1998 .
[43] R. B. Kearfott. Rigorous Global Search: Continuous Problems , 1996 .
[44] J. Cronin. Fixed points and topological degree in nonlinear analysis , 1995 .
[45] Oliver Aberth. Computation of topological degree using interval arithmetic, and applications , 1994 .
[46] G. E. Collins,et al. Real Zeros of Polynomials , 1983 .
[47] W. Burnside,et al. Theory of equations , 1886 .
[48] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[49] Martin Stynes,et al. An algorithm for numerical calculation of topological degree , 1979 .
[50] Vassilis P. Plagianakos,et al. Locating and computing in parallel all the simple roots of special functions using PVM , 2001 .
[51] Ralph Baker Kearfott. Computing the degree of maps and a generalized method of bisection , 1977 .
[52] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[53] R. Baker Kearfott,et al. Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.
[54] R. Baker Kearfott,et al. Some tests of generalized bisection , 1987, TOMS.
[55] M N Vrahatis,et al. A rapid Generalized Method of Bisection for solving Systems of Non-linear Equations , 1986 .
[56] Eldon Hansen. Computing Zeros of Functions Using Generalized Interval Arithmetic , 1994 .
[57] Michael N. Vrahatis,et al. Locating and Computing Zeros of Airy Functions , 1996 .
[58] A. Neumaier. Interval methods for systems of equations , 1990 .
[59] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[60] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[61] Michael N. Vrahatis,et al. Algorithm 666: Chabis: a mathematical software package for locating and evaluating roots of systems of nonlinear equations , 1988, TOMS.
[62] M. N. Vrahatisa,et al. Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2000 .