Algorithm 628: An algorithm for constructing canonical bases of polynomial ideals

The notion of GrGbner bases for polynomial ideals, which is central to this paper, is given by the following: Definition. A finite set F of polynomials in K[xl, . . . , x,] is called a canonical basis or Grtibner basis (for the ideal generated by F) if and only if (GB) for arbitrary polynomials f, g, h E K[xl, . . . , x,]: if f +F g, f “F h, and g, h are irreducible modulo +F, then g = h. Here, ‘f +‘I? g” means that ‘f may be reduced to g modulo F m by applying a certain reduction process that may be considered as a “generalized division.” For the exact definition of this reduction relation and examples, we refer to [4] and [6]. (GB) is equivalent to the assertion that ‘F has the Church-Rosser property, whose fundamental importance in rewrite systems is well known (see, e.g., [22]). The problem of constructing Grijbner bases for polynomial ideals is characterized by the following:

[1]  W. Gröbner,et al.  Moderne Algebraische Geometrie , 1949 .

[2]  Stuart Carl Schaller Algorithmic aspects of polynomial residue class rings , 1979 .

[3]  Rüdiger G. K. Loos Toward a formal implementation of computer algebra , 1974, SIGS.

[4]  H. Reichel B. L. van der Waerden, Algebra. Fünfte Auflage der Modernen Algebra. 2. Teil. (Heidelberger Taschenbücher, Band 23). XII + 300 S. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis brosch. DM 14,80 , 1968 .

[5]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[6]  Franz Winkler,et al.  On the Complexity of the Groebner-Bases Algorithm over K[x, y, z] , 1984, EUROSAM.

[7]  Bernd Heinrich Matzat,et al.  Konstruktion von Zahlkörpern mit der Galoisgruppe M11 über $$\mathbb{Q}(\sqrt { - 11} )$$ , 1979 .

[8]  David Y. Y. Yun,et al.  On algorithms for solving systems of polynomial equations , 1973, SIGS.

[9]  D. A. Spear A constructive approach to commutative ring theory , 1977 .

[10]  H. Michael Möller,et al.  Mehrdimensionale Hermite-Interpolation und numerische Integration , 1976 .

[11]  Bruno Buchberger,et al.  Some properties of Gröbner-bases for polynomial ideals , 1976, SIGS.

[12]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[13]  Franz Winkler The Church-Rosser property in computer algebra and special theorem proving: an investigation of critical-pair/completion algorithms (Ph.D. thesis) , 1984, SIGS.

[14]  B. Buchberger,et al.  Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[15]  I. P. Mysovskikh THE APPROXIMATION OF MULTIPLE INTEGRALS BY USING INTERPOLATORY CUBATURE FORMULAE , 1980 .

[16]  Richard J. Lipton,et al.  Exponential space complete problems for Petri nets and commutative semigroups (Preliminary Report) , 1976, STOC '76.

[17]  George E. Collins The SAC-1 List Processing System , 1971 .

[18]  Markus Lauer Canonical representatives for residue classes of a polynomial ideal , 1976, SYMSAC '76.

[19]  H. Michael Möller,et al.  Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.

[20]  B. F. Caviness,et al.  Simplification of radical expressions , 1976, SYMSAC '76.

[21]  Bruno Buchberger,et al.  A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.

[22]  B. Buchberger An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[23]  Bruno Buchberger,et al.  An improved algorithmic construction of Gröbner-bases for polynomial ideals , 1978, SIGS.

[24]  Bruno Buchberger,et al.  A simplified proof of the characterization theorem for Gröbner-bases , 1980, SIGS.

[25]  Wolfgang Trinks,et al.  Über B. Buchbergers verfahren, systeme algebraischer gleichungen zu lösen , 1978 .

[26]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.