Algorithm 628: An algorithm for constructing canonical bases of polynomial ideals
暂无分享,去创建一个
Bruno Buchberger | Heinrich Rolletschek | Franz Winkler | Franz Lichtenberger | B. Buchberger | H. Rolletschek | F. Winkler | F. Lichtenberger
[1] W. Gröbner,et al. Moderne Algebraische Geometrie , 1949 .
[2] Stuart Carl Schaller. Algorithmic aspects of polynomial residue class rings , 1979 .
[3] Rüdiger G. K. Loos. Toward a formal implementation of computer algebra , 1974, SIGS.
[4] H. Reichel. B. L. van der Waerden, Algebra. Fünfte Auflage der Modernen Algebra. 2. Teil. (Heidelberger Taschenbücher, Band 23). XII + 300 S. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis brosch. DM 14,80 , 1968 .
[5] Bruno Buchberger,et al. A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.
[6] Franz Winkler,et al. On the Complexity of the Groebner-Bases Algorithm over K[x, y, z] , 1984, EUROSAM.
[7] Bernd Heinrich Matzat,et al. Konstruktion von Zahlkörpern mit der Galoisgruppe M11 über $$\mathbb{Q}(\sqrt { - 11} )$$ , 1979 .
[8] David Y. Y. Yun,et al. On algorithms for solving systems of polynomial equations , 1973, SIGS.
[9] D. A. Spear. A constructive approach to commutative ring theory , 1977 .
[10] H. Michael Möller,et al. Mehrdimensionale Hermite-Interpolation und numerische Integration , 1976 .
[11] Bruno Buchberger,et al. Some properties of Gröbner-bases for polynomial ideals , 1976, SIGS.
[12] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[13] Franz Winkler. The Church-Rosser property in computer algebra and special theorem proving: an investigation of critical-pair/completion algorithms (Ph.D. thesis) , 1984, SIGS.
[14] B. Buchberger,et al. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .
[15] I. P. Mysovskikh. THE APPROXIMATION OF MULTIPLE INTEGRALS BY USING INTERPOLATORY CUBATURE FORMULAE , 1980 .
[16] Richard J. Lipton,et al. Exponential space complete problems for Petri nets and commutative semigroups (Preliminary Report) , 1976, STOC '76.
[17] George E. Collins. The SAC-1 List Processing System , 1971 .
[18] Markus Lauer. Canonical representatives for residue classes of a polynomial ideal , 1976, SYMSAC '76.
[19] H. Michael Möller,et al. Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.
[20] B. F. Caviness,et al. Simplification of radical expressions , 1976, SYMSAC '76.
[21] Bruno Buchberger,et al. A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.
[22] B. Buchberger. An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[23] Bruno Buchberger,et al. An improved algorithmic construction of Gröbner-bases for polynomial ideals , 1978, SIGS.
[24] Bruno Buchberger,et al. A simplified proof of the characterization theorem for Gröbner-bases , 1980, SIGS.
[25] Wolfgang Trinks,et al. Über B. Buchbergers verfahren, systeme algebraischer gleichungen zu lösen , 1978 .
[26] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.