Posterior Matching for Gaussian Broadcast Channels with Feedback

In this paper, the posterior matching scheme proposed by Shayevits and Feder is extended to the Gaussian broadcast channel with feedback, and the error probabilities and achievable rate region are derived for this coding strategy by using the iterated random function theory. A variant of the Ozarow-Leung code for the general two-user broadcast channel with feedback can be realized as a special case of our coding scheme. Furthermore, for the symmetric Gaussian broadcast channel with feedback, our coding scheme achieves the linear-feedback sum-capacity like the LQG code and outperforms the Kramer code.

[1]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[2]  Thomas M. Cover,et al.  Broadcast channels , 1972, IEEE Trans. Inf. Theory.

[3]  Hirosuke Yamamoto,et al.  On the capacity of symmetric Gaussian interference channels with feedback , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[4]  J. Pieter M. Schalkwijk,et al.  A coding scheme for additive noise channels with feedback-II: Band-limited signals , 1966, IEEE Trans. Inf. Theory.

[5]  Abbas El Gamal,et al.  The feedback capacity of degraded broadcast channels (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[8]  Michael Gastpar,et al.  The pre-log of Gaussian broadcast with feedback can be two , 2008, 2008 Information Theory and Applications Workshop.

[9]  Tara Javidi,et al.  Linear-Feedback Sum-Capacity for Gaussian Multiple Access Channels , 2012, IEEE Transactions on Information Theory.

[10]  Lawrence H. Ozarow,et al.  An achievable region and outer bound for the Gaussian broadcast channel with feedback , 1984, IEEE Trans. Inf. Theory.

[11]  Yossef Steinberg,et al.  MIMO MAC-BC Duality With Linear-Feedback Coding Schemes , 2015, IEEE Transactions on Information Theory.

[12]  Massimo Franceschetti,et al.  LQG control approach to Gaussian broadcast channels with feedback , 2010 .

[13]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[14]  Michael Gastpar,et al.  Coding Schemes and Asymptotic Capacity for the Gaussian Broadcast and Interference Channels With Feedback , 2010, IEEE Transactions on Information Theory.

[15]  Lan V. Truong Posterior matching scheme for Gaussian multiple access channel with feedback , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[16]  Jack K. Wolf,et al.  The capacity region of a multiple-access discrete memoryless channel can increase with feedback (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[17]  Gerhard Kramer,et al.  Feedback strategies for white Gaussian interference networks , 2002, IEEE Trans. Inf. Theory.

[18]  Meir Feder,et al.  Communication with Feedback via Posterior Matching , 2007, 2007 IEEE International Symposium on Information Theory.

[19]  Selma Belhadj Amor,et al.  Linear-feedback MAC-BC duality for correlated BC-noises, and iterative coding , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[20]  Meir Feder,et al.  Optimal Feedback Communication Via Posterior Matching , 2009, IEEE Transactions on Information Theory.

[21]  Yuhong Yang Elements of Information Theory (2nd ed.). Thomas M. Cover and Joy A. Thomas , 2008 .

[22]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[23]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[24]  Lawrence H. Ozarow,et al.  The capacity of the white Gaussian multiple access channel with feedback , 1984, IEEE Trans. Inf. Theory.

[25]  Thomas Kailath,et al.  A coding scheme for additive noise channels with feedback-I: No bandwidth constraint , 1966, IEEE Trans. Inf. Theory.