Parvalbumin overexpression alters immune‐mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

Intracellular calcium is increased in vulnerable spinal motoneurons in immune‐mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium‐binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune‐mediated increases in calcium and to a lesser extent compensate for the mSOD1‐mediated ‘toxic‐gain‐of‐function’ in transgenic mice.

[1]  A. Pullen,et al.  Ultrastructural analysis of spinal motoneurones from mice treated with IgG from ALS patients, healthy individuals, or disease controls , 2000, Journal of the Neurological Sciences.

[2]  B. Keller,et al.  Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)‐related motoneurone disease , 2000, The Journal of physiology.

[3]  P. Stieg,et al.  Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. , 2000, Science.

[4]  O. Uchitel,et al.  Amyotrophic lateral sclerosis IgG‐treated neuromuscular junctions develop sensitivity to L‐type calcium channel blocker , 2000, Muscle & nerve.

[5]  M. Ward,et al.  Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts , 2000, Trends in Neurosciences.

[6]  S. Appel,et al.  Ultrastructural evidence of calcium involvement in experimental autoimmune gray matter disease , 2000, Journal of neuroscience research.

[7]  S. Appel,et al.  Resistance of extraocular motoneuron terminals to effects of amyotrophic lateral sclerosis sera , 2000, Neurology.

[8]  F E Bloom,et al.  Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice , 2000, The Journal of comparative neurology.

[9]  Margaret A. Johnson,et al.  Mitochondrial enzyme activity in amyotrophic lateral sclerosis: Implications for the role of mitochondria in neuronal cell death , 1999, Annals of neurology.

[10]  R. Adalbert,et al.  Calcium-containing endosomes at oculomotor terminals in animal models of ALS. , 1999, Neuroreport.

[11]  Ole A. Andreassen,et al.  Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis , 1999, Nature Medicine.

[12]  D. Figlewicz,et al.  Glutamate Potentiates the Toxicity of Mutant Cu/Zn-Superoxide Dismutase in Motor Neurons by Postsynaptic Calcium-Dependent Mechanisms , 1998, The Journal of Neuroscience.

[13]  M. Gurney,et al.  Intracellular Calcium Parallels Motoneuron Degeneration in SOD-1 Mutant Mice , 1998, Journal of neuropathology and experimental neurology.

[14]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[15]  Lin Jin,et al.  Aberrant RNA Processing in a Neurodegenerative Disease: the Cause for Absent EAAT2, a Glutamate Transporter, in Amyotrophic Lateral Sclerosis , 1998, Neuron.

[16]  Kwang-Woo Lee,et al.  Amyotrophic lateral sclerosis: Serum factors enhance spontaneous and evoked transmitter release at the neuromuscular junction , 1998, Muscle & nerve.

[17]  Robert H. Brown,et al.  Evidence of Increased Oxidative Damage in Both Sporadic and Familial Amyotrophic Lateral Sclerosis , 1997, Journal of neurochemistry.

[18]  F. Poccia,et al.  Expression of a Cu,Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH‐SY5Y cells , 1997, FEBS letters.

[19]  L. Colom,et al.  Amyotrophic Lateral Sclerosis Immunoglobulins Increase Intracellular Calcium in a Motoneuron Cell Line , 1997, Experimental Neurology.

[20]  M. Dubois‐Dauphin,et al.  Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. , 1997, Science.

[21]  Junying Yuan,et al.  Inhibition of ICE slows ALS in mice , 1997, Nature.

[22]  S. Appel,et al.  Altered Calcium Homeostasis and Ultrastructure in Motoneurons of Mice Caused by Passively Transferred Anti‐motoneuronal IgG , 1997, Journal of neuropathology and experimental neurology.

[23]  L. Colom,et al.  Expression of calbindin-D28K in motoneuron hybrid cells after retroviral infection with calbindin-D28K cDNA prevents amyotrophic lateral sclerosis IgG-mediated cytotoxicity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  O. Andreassen,et al.  Estimation of the number of somatostatin neurons in the striatum: An in situ hybridization study using the optical fractionator method , 1996, The Journal of comparative neurology.

[25]  C. Heizmann,et al.  α-Parvalbumin reduces depolarizationminduced elevations of cytosolic free calcium in human neuroblastoma cells , 1996 .

[26]  F. Joó,et al.  Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophc lateral sclerosis , 1996, Annals of neurology.

[27]  M. Gurney,et al.  Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis , 1996, Annals of neurology.

[28]  L. Komuves,et al.  Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motoneurons , 1995, Synapse.

[29]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[30]  W. Snider,et al.  Parvalbumin is a marker of ALS-resistant motor neurons. , 1995, Neuroreport.

[31]  E. Stefani,et al.  Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line , 1995, Annals of neurology.

[32]  V. La Bella,et al.  The role of calcium‐binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis , 1994, Annals of neurology.

[33]  M. Gurney,et al.  Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. , 1994, The American journal of pathology.

[34]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[35]  R. Miller,et al.  Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. , 1993, The Journal of physiology.

[36]  H. Nojima,et al.  Expression of the rat calmodulin gene II in the central nervous system: a 294-base promoter and 68-base leader segment mediates neuron-specific gene expression in transgenic mice. , 1993, Brain research. Molecular brain research.

[37]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[38]  C. Heizmann,et al.  Parvalbumin and calbindin D‐28k in the human motor system and in motor neuron disease , 1993, Neuropathology and applied neurobiology.

[39]  E. B. VEDEL JENSEN,et al.  The rotator , 1993 .

[40]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[41]  D. Choi Excitotoxic cell death. , 1992, Journal of neurobiology.

[42]  P. Emson,et al.  Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis , 1992, Neuron.

[43]  J. Rothstein,et al.  Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. , 1992, The New England journal of medicine.

[44]  H. Gundersen,et al.  Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator , 1991, The Anatomical record.

[45]  E. Stefani,et al.  Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[47]  H J Gundersen,et al.  The efficiency of systematic sampling in stereology and its prediction * , 1987, Journal of microscopy.

[48]  R. Adalbert,et al.  Altered calcium homeostasis in spinal motoneurons but not in oculomotor neurons of SOD-1 knockout mice , 2000, Acta Neuropathologica.

[49]  C. Heizmann,et al.  Alpha-parvalbumin reduces depolarization-induced elevations of cytosolic free calcium in human neuroblastoma cells. , 1996, Cell Calcium.

[50]  A. Hirano Cytopathology of amyotrophic lateral sclerosis. , 1991, Advances in neurology.

[51]  E. Stefani,et al.  Immune-mediated models of motor neuron destruction in the guinea pig. , 1991, Advances in neurology.

[52]  P N Leigh,et al.  Cytoskeletal pathology in motor neuron diseases. , 1991, Advances in neurology.

[53]  R. Bauer 6 Electron Spectroscopic Imaging: An Advanced Technique for Imaging and Analysis in Transmission Electron Microscopy , 1988 .