Quantum algorithms using the curvelet transform
暂无分享,去创建一个
[1] Santosh S. Vempala,et al. Dispersion of Mass and the Complexity of Randomized Geometric Algorithms , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[2] Ashley Montanaro,et al. Quantum algorithms for shifted subset problems , 2008, Quantum Inf. Comput..
[3] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[4] Elias M. Stein,et al. Fourier Analysis: An Introduction , 2003 .
[5] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[6] Michael H. Freedman,et al. Poly-Locality in Quantum Computing , 2000, Found. Comput. Math..
[7] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[8] Jan Neerbek,et al. Bounds on quantum ordered searching , 2000 .
[9] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[10] P. Høyer. Efficient Quantum Transforms , 1997, quant-ph/9702028.
[11] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[12] Lexing Ying,et al. 3D discrete curvelet transform , 2005, SPIE Optics + Photonics.
[13] Andrew M. Childs,et al. Quantum algorithms for algebraic problems , 2008, 0812.0380.
[14] E. Candès,et al. Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .
[15] Umesh V. Vazirani,et al. Quantum Algorithms for Hidden Nonlinear Structures , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[16] Amnon Ta-Shma,et al. Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.
[17] Anthony Chefles. Quantum state discrimination , 2000 .
[18] Hart F. Smith. A Hardy space for Fourier integral operators , 1998 .
[19] Francisco J. Blanco-Silva. The Curvelet Transform. A generalized definition and approximation properties. , 2007 .
[20] Sean Hallgren,et al. Superpolynomial Speedups Based on Almost Any Quantum Circuit , 2008, ICALP.
[21] S. Jordan. Fast quantum algorithm for numerical gradient estimation. , 2004, Physical review letters.
[22] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[23] Amir Fijany,et al. Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits , 1998, QCQC.
[24] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[25] E. Candès,et al. Continuous curvelet transform , 2003 .
[26] Alexander Russell,et al. On the Impossibility of a Quantum Sieve Algorithm for Graph Isomorphism , 2010, SIAM J. Comput..
[27] Oded Regev. Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..
[28] Dave Bacon,et al. From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[29] Lov K. Grover,et al. Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.
[30] Pawel Wocjan,et al. Efficient quantum algorithm for identifying hidden polynomials , 2007, Quantum Inf. Comput..
[31] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..