Quantum algorithms using the curvelet transform

The curvelet transform is a directional wavelet transform over Rn, which is used to analyze functions that have singularities along smooth surfaces (Candes and Donoho, 2002). I demonstrate how this can lead to new quantum algorithms. I give an efficient implementation of a quantum curvelet transform, together with two applications: a single-shot measurement procedure for approximately finding the center of a ball in Rn, given a quantum-sample over the ball; and, a quantum algorithm for finding the center of a radial function over Rn, given oracle access to the function. I conjecture that these algorithms succeed with constant probability, using one quantum-sample and O(1) oracle queries, respectively, independent of the dimension n -- this can be interpreted as a quantum speed-up. To support this conjecture, I prove rigorous bounds on the distribution of probability mass for the continuous curvelet transform. This shows that the above algorithms work in an idealized "continuous" model.

[1]  Santosh S. Vempala,et al.  Dispersion of Mass and the Complexity of Randomized Geometric Algorithms , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[2]  Ashley Montanaro,et al.  Quantum algorithms for shifted subset problems , 2008, Quantum Inf. Comput..

[3]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[4]  Elias M. Stein,et al.  Fourier Analysis: An Introduction , 2003 .

[5]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[6]  Michael H. Freedman,et al.  Poly-Locality in Quantum Computing , 2000, Found. Comput. Math..

[7]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[8]  Jan Neerbek,et al.  Bounds on quantum ordered searching , 2000 .

[9]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[10]  P. Høyer Efficient Quantum Transforms , 1997, quant-ph/9702028.

[11]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[12]  Lexing Ying,et al.  3D discrete curvelet transform , 2005, SPIE Optics + Photonics.

[13]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[14]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[15]  Umesh V. Vazirani,et al.  Quantum Algorithms for Hidden Nonlinear Structures , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[16]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[17]  Anthony Chefles Quantum state discrimination , 2000 .

[18]  Hart F. Smith A Hardy space for Fourier integral operators , 1998 .

[19]  Francisco J. Blanco-Silva The Curvelet Transform. A generalized definition and approximation properties. , 2007 .

[20]  Sean Hallgren,et al.  Superpolynomial Speedups Based on Almost Any Quantum Circuit , 2008, ICALP.

[21]  S. Jordan Fast quantum algorithm for numerical gradient estimation. , 2004, Physical review letters.

[22]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[23]  Amir Fijany,et al.  Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits , 1998, QCQC.

[24]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[25]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[26]  Alexander Russell,et al.  On the Impossibility of a Quantum Sieve Algorithm for Graph Isomorphism , 2010, SIAM J. Comput..

[27]  Oded Regev Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..

[28]  Dave Bacon,et al.  From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[29]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[30]  Pawel Wocjan,et al.  Efficient quantum algorithm for identifying hidden polynomials , 2007, Quantum Inf. Comput..

[31]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..