Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms’ Inactivation: Tools for Model Comparison and Adequacy in Data Fitting

Microbial inactivation often follows a sigmoidal kinetic behaviour, with an initial lag phase, followed by a maximum inactivation rate period and tending to a final asymptotic value. Mathematically, such tendencies may be described by using primary kinetic models (Gompertz based model is one example) that describe microbial survival throughout processing time when stressing conditions are applied. The parameters of kinetic models are directly affected by temperature. Despite the number of mathematical equations used to describe the dependence of the kinetic parameters on temperature (so-called secondary models), there is a lack of studies regarding model comparison and adequacy in data fitting. This work provides a review of mathematical models that describe the temperature dependence of kinetic parameters related to microbial thermal inactivation. Regression analysis schemes and tests seeking model comparison are presented. A case study is included to provide guidance for the assessment of secondary model adequacy and regression analyses procedures. When modelling temperature effects on sigmoidal inactivation kinetics of microorganisms, one should be aware about the regression methodology applied. The most adequate models according to the two-step regression methodology may not be the best selection if a global fit is applied.

[1]  K Bernaerts,et al.  Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination. , 2005, International journal of food microbiology.

[2]  T. Oscar,et al.  Development and validation of a tertiary simulation model for predicting the potential growth of Salmonella typhimurium on cooked chicken. , 2002, International journal of food microbiology.

[3]  H M Marks,et al.  Modeling non-linear survival curves to calculate thermal inactivation of salmonella in poultry of different fat levels. , 2001, International journal of food microbiology.

[4]  M Peleg,et al.  Reinterpretation of microbial survival curves. , 1998, Critical reviews in food science and nutrition.

[5]  Cristina L. M. Silva,et al.  Heat inactivation of Listeria innocua in broth and food products under non-isothermal conditions , 2011 .

[6]  M. Boekel,et al.  Statistical aspects of kinetic modeling for food science problems. , 1996 .

[7]  D W Schaffner,et al.  Evaluation of data transformations used with the square root and schoolfield models for predicting bacterial growth rate , 1992, Applied and environmental microbiology.

[8]  C. Char,et al.  Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition , 2009 .

[9]  C. Peri,et al.  A Dynamic Mathematical Model of the Thermal Inactivation ofEnterococcus faeciumduring Bologna Sausage Cooking , 1997 .

[10]  J. Phillips,et al.  Model for the combined effects of temperature, pH and sodium chloride concentration on survival of Shigella flexneri strain 5348 under aerobic conditions. , 2005, International journal of food microbiology.

[11]  A. N. Stokes,et al.  Model for bacterial culture growth rate throughout the entire biokinetic temperature range , 1983, Journal of bacteriology.

[12]  Donald W Schaffner,et al.  Modeling the Effect of Temperature on the Growth Rate and Lag Time of Listeria innocua and Listeria monocytogenes. , 1993, Journal of food protection.

[13]  M. H. Zwietering,et al.  Modeling of Bacterial Growth with Shifts in Temperature , 1994, Applied and environmental microbiology.

[14]  James M. Jay,et al.  Modern food microbiology , 1970 .

[15]  I. Leguerinel,et al.  Quantifying the effects of heating temperature, and combined effects of heating medium pH and recovery medium pH on the heat resistance of Salmonella typhimurium. , 2007, International journal of food microbiology.

[16]  Michael L. Johnson,et al.  [16] Nonlinear least-squares analysis , 1985 .

[17]  Daryl Lund,et al.  CONSIDERATIONS IN CALCULATING KINETIC PARAMETERS FROM EXPERIMENTAL DATA , 1985 .

[18]  H J Motulsky,et al.  Fitting curves to data using nonlinear regression: a practical and nonmathematical review , 1987, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  J. Subbiah,et al.  Dynamic model for predicting growth of Salmonella spp. in ground sterile pork. , 2011, Food microbiology.

[20]  P. Sharpe,et al.  Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. , 1981, Journal of theoretical biology.

[21]  I. Saguy,et al.  Kinetic Parameter Estimation for Quality Change during Continuous Thermal Processing of Grapefruit Juice , 1994 .

[22]  R. H. Myers,et al.  Probability and Statistics for Engineers and Scientists , 1978 .

[23]  Lihan Huang Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions , 2009 .

[24]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[25]  K van't Riet,et al.  Modeling of bacterial growth as a function of temperature , 1991, Applied and environmental microbiology.

[26]  M. Peleg,et al.  Non-Arrhenius and non-WLF kinetics in food systems , 2002 .

[27]  Cristina L. M. Silva,et al.  Comparison of recovery methods for the enumeration of injured Listeria innocua cells under isothermal and non-isothermal treatments. , 2010, Food microbiology.

[28]  B Fu,et al.  Conditions and constraints of food processing in space. , 1994, Food technology.

[29]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[30]  M. Catteau,et al.  Modelling the growth, survival and death of Listeria monocytogenes , 1997, Journal of applied microbiology.

[31]  A. S. Edmondson,et al.  Comparison of the Baranyi model with the modified Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A , 1999 .

[32]  K. Davey Applicability of the Davey (linear Arrhenius) predictive model to the lag phase of microbial growth , 1991 .

[33]  P. Mafart Taking injuries of surviving bacteria into account for optimising heat treatments. , 2000, International journal of food microbiology.

[34]  Cristina L. M. Silva,et al.  On the Use of the Gompertz Model to Predict Microbial Thermal Inactivation Under Isothermal and Non-Isothermal Conditions , 2011 .

[35]  Keith J. Laidler,et al.  Theories Of Chemical Reaction Rates , 1969 .

[36]  J. Guckenheimer Dynamic model , 1989, Nature.

[37]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[38]  P. Dalgaard,et al.  3 Secondary Models , 2003 .

[39]  S Krawiec,et al.  Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. , 1980, Journal of general microbiology.

[40]  Tom Ross,et al.  Predictive Microbiology : Theory and Application , 1993 .

[41]  G. Shama,et al.  Modeling the Inactivation Kinetics of Bacillus subtilis Spores by Nonthermal Plasmas , 2006, IEEE Transactions on Plasma Science.

[42]  T. Ross,et al.  The influence of non-lethal temperature on the rate of inactivation of vegetative bacteria in inimical environments may be independent of bacterial species. , 2010, Food microbiology.

[43]  G. Nychas,et al.  Modeling survival of Listeria monocytogenes in the traditional Greek soft cheese Katiki. , 2008, Journal of food protection.

[44]  T. B. Hansen Predictive food microbiology , 2016 .

[45]  Cristina L. M. Silva,et al.  Sigmoidal thermal inactivation kinetics of listeria innocua in broth: Influence of strain and growth phase , 2009 .

[46]  U. Shivhare,et al.  Thermal death kinetics of B. stearothermophilus in coriander leaf puree. , 2010 .

[47]  Da‐Wen Sun,et al.  Predictive food microbiology for the meat industry: a review. , 1999, International journal of food microbiology.

[48]  Cristina L. M. Silva,et al.  Influence of pH, type of acid and recovery media on the thermal inactivation of Listeria innocua. , 2009, International journal of food microbiology.

[49]  M Peleg,et al.  A model of microbial survival curves in water treated with a volatile disinfectant , 2003, Journal of applied microbiology.

[50]  Marcel H Zwietering,et al.  A systematic approach to determine global thermal inactivation parameters for various food pathogens. , 2006, International journal of food microbiology.

[51]  E. Walshaw,et al.  A systematic approach , 2018, BDJ.

[52]  Antoine Clinquart,et al.  Development of predictive modelling tool for food business operators to comply with European food law , 2009 .

[53]  J. Impe,et al.  An Alternative Approach to Non-Log-Linear Thermal Microbial Inactivation: Modelling the Number of Log Cycles Reduction with Respect to Temperature** , 2005 .

[54]  Stephen G. Haralampu,et al.  ESTIMATION OF ARRHENIUS MODEL PARAMETERS USING THREE LEAST SQUARES METHODS , 1985 .

[55]  Lihan Huang Growth kinetics of Escherichia coli O157:H7 in mechanically-tenderized beef. , 2010, International journal of food microbiology.

[56]  T. Ross,et al.  Predictive microbiology. , 1994, International journal of food microbiology.

[57]  T. A. Roberts,et al.  Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. , 1988, International journal of food microbiology.

[58]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[59]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[60]  T. Ross Indices for performance evaluation of predictive models in food microbiology. , 1996, The Journal of applied bacteriology.

[61]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[62]  Israel Saguy,et al.  STATISTICAL EVALUATION OF ARRHENIUS MODEL AND ITS APPLICABILITY IN PREDICTION OF FOOD QUALITY LOSSES , 1985 .

[63]  S. Koseki,et al.  Modeling and predicting the simultaneous growth of Listeria monocytogenes and natural flora in minced tuna. , 2011, Journal of food protection.

[64]  D. Schaffner The application of the WLF equation to predict lag time as a function of temperature for three psychrotrophic bacteria. , 1995, International journal of food microbiology.

[65]  Teresa R. S. Brandão,et al.  A modified Gompertz model to predict microbial inactivation under time-varying temperature conditions , 2006 .

[66]  D. Kilsby,et al.  Comparison of the Schoolfield (non-linear Arrhenius) model and the Square Root model for predicting bacterial growth in foods , 1989 .

[67]  J Olley,et al.  Relationship between temperature and growth rate of bacterial cultures , 1982, Journal of bacteriology.

[68]  K. Koutsoumanis,et al.  A vitalistic approach for non-thermal inactivation of pathogens in traditional Greek salads , 2002 .

[69]  R. Kass Nonlinear Regression Analysis and its Applications , 1990 .