Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies

Abstract We present algebraic multilevel iteration (AMLI) methods for isogeometric discretization of scalar second order elliptic problems. The construction of coarse grid operators and hierarchical complementary operators are given. Moreover, for a uniform mesh on a unit interval, the explicit representation of B-spline basis functions for a fixed mesh size h is given for p = 2 , 3 , 4 and for C 0 - and C p - 1 -continuity. The presented methods show h - and (almost) p -independent convergence rates. Supporting numerical results for convergence factor and iterations count for AMLI cycles ( V -, linear W -, nonlinear W -) are provided. Numerical tests are performed, in two-dimensions on square domain and quarter annulus, and in three-dimensions on quarter thick ring.

[1]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[2]  S. Margenov,et al.  Robust semi-coarsening multilevel preconditioning of biquadratic FEM systems , 2012 .

[3]  M. Fortin,et al.  An efficient hierarchical preconditioner for quadratic discretizations of finite element problems , 2011, Numer. Linear Algebra Appl..

[4]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[5]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[6]  Owe Axelsson Stabilization of algebraic multilevel iteration methods; additive methods , 2004, Numerical Algorithms.

[7]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[8]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[9]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[10]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[11]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[12]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[13]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[14]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[15]  Johannes K. Kraus,et al.  An algebraic preconditioning method for M‐matrices: linear versus non‐linear multilevel iteration , 2002, Numer. Linear Algebra Appl..

[16]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[17]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[18]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[19]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[20]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[21]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[22]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[23]  Satyendra Tomar,et al.  Condition number estimates for matrices arising in the isogeometric discretizations , 2012 .

[24]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[25]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .

[26]  曹志浩,et al.  ON ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1993 .

[27]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[28]  Yvan Notay,et al.  Robust parameter‐free algebraic multilevel preconditioning , 2002, Numer. Linear Algebra Appl..

[29]  Svetozar Margenov,et al.  Robust Algebraic Multilevel Methods and Algorithms , 2009 .

[30]  Jesús Ildefonso Díaz Díaz,et al.  ON THE COMPLEX GINZBURG–LANDAU EQUATION WITH A DELAYED FEEDBACK , 2006 .

[31]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[32]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[33]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[34]  Victor Eijkhout,et al.  The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..

[35]  Owe Axelsson,et al.  Two Simple Derivations of Universal Bounds for the C.B.S. Inequality Constant , 2004 .

[36]  Adarsh Krishnamurthy,et al.  Optimized GPU evaluation of arbitrary degree NURBS curves and surfaces , 2009, Comput. Aided Des..

[37]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[38]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[39]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[40]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[41]  Ludmil T. Zikatanov,et al.  Polynomial of Best Uniform Approximation to 1/x and Smoothing in Two-level Methods , 2010, Comput. Methods Appl. Math..

[42]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[43]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[44]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[45]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .