Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: Interseismic megathrust coupling

[1] We use campaign and continuous GPS measurements at 49 sites between 1996 and 2010 to describe the long-term active deformation in and near the Nicoya Peninsula, northwestern Costa Rica. The observed deformation reveals partial partitioning of the Cocos-Caribbean oblique convergence into trench-parallel forearc sliver motion and less oblique thrusting on the subduction interface. The northern Costa Rican forearc translates northwestward as a whole ridge block at 11 ± 1 mm/yr relative to the stable Caribbean. The transition from the forearc to the stable Caribbean occurs in a narrow deforming zone of ∼16 km wide. Subduction thrust earthquakes take 2/3 of the trench-parallel component of the plate convergence; however, surface deformation caused by interseismic megathrust coupling is primarily trench-normal. Two fully coupled patches, one located offshore Nicoya centered at ∼15 km depth and the other located inland centered at ∼24 km depth, are identified in Nicoya with the potential to generate an Mw 7.8 1950-type earthquake. Another fully coupled patch SE of Nicoya coincides with the rupture region of the 1990 Nicoya Gulf earthquake. Interface microearthquakes, non-volcanic tremor, low-frequency earthquakes, and transient slow-slip events generally occur in the intermediately to weakly coupled regions.

[1]  T. Dixon,et al.  Slow slip events in Costa Rica detected by continuous GPS observations, 2002–2011 , 2012 .

[2]  H. Fritz,et al.  The energetic 2010 MW 7.1 Solomon Islands tsunami earthquake , 2011 .

[3]  Susan Y. Schwartz,et al.  Persistent tremor within the northern Costa Rica seismogenic zone , 2011 .

[4]  R. Clayton,et al.  The 2006 slow slip event and nonvolcanic tremor in the Mexican subduction zone , 2010 .

[5]  R. Harris,et al.  Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica , 2010 .

[6]  T. Dixon,et al.  A Tremor and Slip Event on the Cocos-Caribbean Subduction zone as measured by a GPS and Seismic Network on the Nicoya Peninsula, Costa Rica , 2010 .

[7]  M. Moreno,et al.  2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone , 2010, Nature.

[8]  Zhigang Peng,et al.  An integrated perspective of the continuum between earthquakes and slow-slip phenomena , 2010 .

[9]  S. Malone,et al.  Array analysis and precise source location of deep tremor in Cascadia , 2010 .

[10]  Richard G. Gordon,et al.  Geologically current plate motions , 2010 .

[11]  H. Kao,et al.  Northern Cascadia episodic tremor and slip: A decade of tremor observations from 1997 to 2007 , 2009 .

[12]  Gregory C. Beroza,et al.  Deep low‐frequency earthquakes in tremor localize to the plate interface in multiple subduction zones , 2009 .

[13]  H. Fritz,et al.  Slip distribution from the 1 April 2007 Solomon Islands earthquake: A unique image of near‐trench rupture , 2009 .

[14]  S. Peacock Thermal and metamorphic environment of subduction zone episodic tremor and slip , 2009 .

[15]  Douglas H. Christensen,et al.  Possible relationship between nonvolcanic tremor and the 1998–2001 slow slip event, south central Alaska , 2009 .

[16]  T. Dixon,et al.  Fore‐arc motion and Cocos Ridge collision in Central America , 2009 .

[17]  S. Bilek,et al.  Triggered seismicity associated with the 1990 Nicoya, Costa Rica, Mw = 7.0 earthquake , 2009 .

[18]  Y. Fialko,et al.  Hydrologic detection and finite element modeling of a slow slip event in the Costa Rica prism toe , 2009 .

[19]  Chihiro Hashimoto,et al.  Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion , 2009 .

[20]  S. Malone,et al.  Cascadia Tremor Located Near Plate Interface Constrained by S Minus P Wave Times , 2009, Science.

[21]  Enrique Cabral-Cano,et al.  Interplate coupling and transient slip along the subduction interface beneath Oaxaca, Mexico , 2008 .

[22]  G. Beroza,et al.  An autocorrelation method to detect low frequency earthquakes within tremor , 2008 .

[23]  Jean-Philippe Avouac,et al.  Heterogeneous coupling on the Sumatra megathrust constrained from geodetic and paleogeodetic measurements , 2008 .

[24]  S. Malone,et al.  Testing Small-Aperture Array Analysis on Well-Located Earthquakes, and Application to the Location of Deep Tremor , 2008 .

[25]  Robert W. Clayton,et al.  Nonvolcanic tremor observed in the Mexican subduction zone , 2008 .

[26]  Abhijit Ghosh,et al.  Interface locking along the subduction megathrust from b‐value mapping near Nicoya Peninsula, Costa Rica , 2008 .

[27]  K. Creager,et al.  Cascadia tremor polarization evidence for plate interface slip , 2007 .

[28]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[29]  G. Beroza,et al.  Non-volcanic tremor and low-frequency earthquake swarms , 2007, Nature.

[30]  G. Beroza,et al.  Mechanism of deep low frequency earthquakes: Further evidence that deep non‐volcanic tremor is generated by shear slip on the plate interface , 2007 .

[31]  T. Dixon,et al.  The Seismogenic Zone of Subduction Thrust Faults , 2007 .

[32]  T. Dixon,et al.  18. Distinct Updip Limits to Geodetic Locking and Microseismicity at the Northern Costa Rica Seismogenic Zone Evidence for Two Mechanical Transitions , 2007 .

[33]  Michael R. Brudzinski,et al.  Determination of slow slip episodes and strain accumulation along the Cascadia margin , 2006 .

[34]  C. Lasserre,et al.  Kinematics of the North American–Caribbean‐Cocos plates in Central America from new GPS measurements across the Polochic‐Motagua fault system , 2006 .

[35]  G. Beroza,et al.  Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip , 2006, Nature.

[36]  H. Villinger,et al.  Transient formation fluid pressures and temperatures in the Costa Rica forearc prism and subducting oceanic basement: CORK monitoring at ODP Sites 1253 and 1255 , 2006 .

[37]  T. Dixon,et al.  Strain accumulation across the Carrizo segment of the San Andreas Fault, California : Impact of laterally varying crustal properties , 2006 .

[38]  S. Malone,et al.  Temporal and spatial occurrence of deep non‐volcanic tremor: From Washington to northern California , 2005 .

[39]  K. Brown,et al.  Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone [rapid communication] , 2005 .

[40]  H. Kao,et al.  A wide depth distribution of seismic tremors along the northern Cascadia margin , 2005, Nature.

[41]  P. Lonsdale Creation of the Cocos and Nazca plates by fission of the Farallon plate , 2005 .

[42]  V. E. Levin,et al.  Interseismic coupling and asperity distribution along the Kamchatka subduction zone , 2005 .

[43]  Göran Ekström,et al.  Global seismicity of 2003: centroid–moment-tensor solutions for 1087 earthquakes , 2005 .

[44]  H. Hirose,et al.  Episodic slow slip events accompanied by non‐volcanic tremors in southwest Japan subduction zone , 2004 .

[45]  T. Dixon,et al.  A Creep Event on the Shallow Interface of the Nicoya Peninsula, Costa Rica Seismogenic Zone , 2004 .

[46]  G. Alvarado,et al.  Middle Miocene to present plate tectonic history of the southern Central American Volcanic Arc , 2004 .

[47]  S. Schwartz,et al.  Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica , 2004 .

[48]  Teruyuki Kato,et al.  Inter-plate coupling in the Nicoya Peninsula, Costa Rica, as deduced from a trans-peninsula GPS experiment , 2004 .

[49]  D. Saffer,et al.  Along‐strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity , 2004 .

[50]  Paul Lundgren,et al.  Geodetic and Seismic Constraints on some Seismogenic Zone Processes in Costa Rica , 2003 .

[51]  Timothy H. Dixon,et al.  Seismogenic zone structure of the southern Middle America Trench, Costa Rica , 2003 .

[52]  J. Morgan,et al.  Bending-related faulting and mantle serpentinization at the Middle America trench , 2003, Nature.

[53]  H. Dragert,et al.  Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip , 2003, Science.

[54]  R. Harris,et al.  Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate , 2003 .

[55]  S. Schwartz,et al.  Control of seafloor roughness on earthquake rupture behavior , 2003 .

[56]  Kelin Wang,et al.  Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica , 2002 .

[57]  V. González,et al.  Along‐strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica , 2002 .

[58]  Kazushige Obara,et al.  Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan , 2002, Science.

[59]  H. Zebker,et al.  Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements , 2002 .

[60]  S. Husen,et al.  Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: The cause of the 1990 Mw = 7.0 Gulf of Nicoya earthquake , 2002 .

[61]  S. Cande,et al.  Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models , 2001 .

[62]  D. Saffer,et al.  Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress , 2001 .

[63]  J. Marshall,et al.  Central Costa Rica deformed belt: Kinematics of diffuse faulting across the western Panama block , 2000 .

[64]  C. Findlay,et al.  Subduction erosion along the Middle America convergent margin , 2000, Nature.

[65]  W. Weinrebe,et al.  Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism , 2000 .

[66]  M. J. Carr,et al.  Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input , 2000 .

[67]  Meghan S. Miller,et al.  Present‐day motion of the Sierra Nevada block and some tectonic implications for the Basin and Range province, North American Cordillera , 2000 .

[68]  M. Heflin,et al.  Seismic cycle and plate margin deformation in Costa Rica: GPS observations from 1994 to 1997 , 1999 .

[69]  Kelin Wang,et al.  The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Casca , 1999 .

[70]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[71]  M. Yamano,et al.  The seismogenic zone of subduction thrust faults , 1997 .

[72]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[73]  P. Ihmlé Monte Carlo slip inversion in the frequency domain∷ Application to the 1992 Nicaragua Slow Earthquake , 1996 .

[74]  J. Pacheco,et al.  The March 25, 1990 (Mw = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: Its prior activity, foreshocks, aftershocks, and triggered seismicity , 1995 .

[75]  J. Marshall,et al.  Quaternary uplift and seismic cycle deformation, Península de Nicoya, Costa Rica , 1995 .

[76]  K. Satake Mechanism of the 1992 Nicaragua Tsunami Earthquake , 1994 .

[77]  M. Protti,et al.  The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network , 1994 .

[78]  R. White,et al.  Destructive upper-crustal earthquakes of Central America since 1900 , 1993, Bulletin of the Seismological Society of America.

[79]  Masayuki Kikuchi,et al.  The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments , 1993, Nature.

[80]  P. Segall,et al.  Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake , 1992, Bulletin of the Seismological Society of America.

[81]  Y. Okada Internal deformation due to shear and tensile faults in a half-space , 1992, Bulletin of the Seismological Society of America.

[82]  Michael B. Heflin,et al.  Global geodesy using GPS without fiducial sites , 1992 .

[83]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[84]  P. Mann,et al.  SeaMARC II mapping of transform faults in the Cayman Trough, Caribbean Sea , 1991 .

[85]  Stuart P. Nishenko,et al.  Circum-Pacific seismic potential: 1989–1999 , 1991 .

[86]  D. Wiens,et al.  Seismic rupture associated with subduction of the Cocos Ridge , 1987 .

[87]  P. Segall,et al.  Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault , 1987 .

[88]  J. C. Savage A dislocation model of strain accumulation and release at a subduction zone , 1983 .

[89]  G. Plafker Tectonic Aspects of the Guatemala Earthquake of 4 February 1976 , 1976, Science.

[90]  Tom Simkin,et al.  Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions , 2013 .

[91]  Anny Cazenave,et al.  Contemporary sea level rise. , 2010, Annual review of marine science.

[92]  S. Schwartz,et al.  Distinct Updip Limits to Geodetic Locking and Microseismicity at the Northern Costa Rica Seismogenic Zone , 2007 .

[93]  T. Dixon,et al.  Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three‐dimensional local earthquake P‐ and S‐wave tomography , 2006 .

[94]  J. Cataldo,et al.  Evaluación del potencial eólico en Uruguay , 2001 .

[95]  Costa Rica,et al.  Seismogenic Zone Structure of the Southern Middle America Trench , , 2022 .