An LO Leakage Suppression Technique for Blocker-Tolerant Wideband Receivers With High-Q Selectivity at RF Input

A wideband blocker-tolerant receiver (RX) employing a novel local oscillator (LO) leakage suppression technique is presented. At the core of this RX, lies a bandpass common-gate structure that realizes high-<inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> selectivity directly at RF input while greatly suppressing LO leakage coupled to the RX input. The RX prototype, manufactured in a 45-nm CMOS SOI process, achieves wideband tunable high-<inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> selectivity from 0.2 to 2 GHz, while the LO leakage stays well below −80 dBm. The noise figure is better than 2.5 dB and degrades to 6.7 dB with a 0-dBm blocker at 80-MHz offset frequency. The measured out-of-band IIP2 and IIP3 at 100-MHz offset frequency are +60 and +14 dBm, respectively. The RX consumes up to 95 mW of total power at 2 GHz and occupies 1.05 mm <sup>2</sup> of active area.

[1]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[2]  Bram Nauta,et al.  Active Feedback Technique for RF Channel Selection in Front-End Receivers , 2012, IEEE Journal of Solid-State Circuits.

[3]  Peter R. Kinget,et al.  A Blocker-Tolerant RF Front End With Harmonic-Rejecting $N$ -Path Filter , 2018, IEEE Journal of Solid-State Circuits.

[4]  David Murphy,et al.  A Noise-Cancelling Receiver Resilient to Large Harmonic Blockers , 2015, IEEE Journal of Solid-State Circuits.

[5]  Eric A. M. Klumperink,et al.  Tunable N-Path Notch Filters for Blocker Suppression: Modeling and Verification , 2013, IEEE Journal of Solid-State Circuits.

[6]  Dong Yang,et al.  A baseband technique for automated LO leakage suppression achieving < −80dBm in wideband passive mixer-first receivers , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[7]  Bram Nauta,et al.  Design of Active N-Path Filters , 2013, IEEE Journal of Solid-State Circuits.

[8]  Eric A. M. Klumperink,et al.  N-path filters and mixer-first receivers: A review , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[9]  Namsoo Kim,et al.  A 1.8 dB NF Blocker-Filtering Noise-Canceling Wideband Receiver With Shared TIA in 40 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[10]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[11]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[12]  Eric A. M. Klumperink,et al.  A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving ≫11dBm IIP3 and ≪6.5 dB NF , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[13]  Philippe Cathelin,et al.  Reconfigurable wide-band receiver with positive feed-back translational loop , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[14]  Alyosha C. Molnar,et al.  A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface , 2010, IEEE Journal of Solid-State Circuits.

[15]  K.S.J. Pister,et al.  Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply , 2006, IEEE Journal of Solid-State Circuits.

[16]  Eric A. M. Klumperink,et al.  High-Linearity Bottom-Plate Mixing Technique With Switch Sharing for $N$ -path Filters/Mixers , 2019, IEEE Journal of Solid-State Circuits.

[17]  Eric A. M. Klumperink,et al.  Enhanced-Selectivity High-Linearity Low-Noise Mixer-First Receiver With Complex Pole Pair Due to Capacitive Positive Feedback , 2018, IEEE Journal of Solid-State Circuits.

[18]  Pui-In Mak,et al.  A Sub-GHz Multi-ISM-Band ZigBee Receiver Using Function-Reuse and Gain-Boosted N-Path Techniques for IoT Applications , 2014, IEEE Journal of Solid-State Circuits.

[19]  Xin He,et al.  A compact SAW-less multiband WCDMA/GPS receiver front-end with translational loop for input matching , 2011, 2011 IEEE International Solid-State Circuits Conference.

[20]  Behzad Razavi,et al.  Channel Selection at RF Using Miller Bandpass Filters , 2014, IEEE Journal of Solid-State Circuits.

[21]  Hossein Hashemi,et al.  Dual-Carrier Aggregation Receiver With Reconfigurable Front-End RF Signal Conditioning , 2015, IEEE Journal of Solid-State Circuits.

[22]  Jonathan Borremans,et al.  A 40 nm CMOS 0.4–6 GHz Receiver Resilient to Out-of-Band Blockers , 2011, IEEE Journal of Solid-State Circuits.

[23]  Payam Heydari,et al.  28.7 A Wideband Blocker-Tolerant Receiver with High-Q RF-Input Selectivity and <-80dBm LO Leakage , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[24]  Eric A. M. Klumperink,et al.  Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification , 2011, IEEE Journal of Solid-State Circuits.

[25]  Behzad Razavi The role of translational circuits in RF receiver design , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[26]  Borivoje Nikolic,et al.  An Interference-Resilient Wideband Mixer-First Receiver With LO Leakage Suppression and I/Q Correlated Orthogonal Calibration , 2016, IEEE Transactions on Microwave Theory and Techniques.

[27]  Lawrence E. Larson,et al.  A pseudorandom clocking scheme for a CMOS N-path bandpass filter with 10-to-15 dB spurious leakage improvement , 2015, 2015 IEEE Radio and Wireless Symposium (RWS).

[28]  Ahmad Mirzaei,et al.  A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications , 2012, IEEE Journal of Solid-State Circuits.

[29]  Peter R. Kinget,et al.  An Out-of-Band IM3 Cancellation Technique Using a Baseband Auxiliary Path in Wideband LNTA-Based Receivers , 2018, IEEE Transactions on Microwave Theory and Techniques.