Central Schemes and Systems of Balance Laws

The development of shock capturing schemes for the numerical approximation of the solution of conservation laws has been a very active field of research in the last two decades. There are several motivations for this effort. First, the challenge is a mathematical one. Solutions of conservation laws may develop jump discontinuities in finite time. To understand how to obtain numerical approximations that converge to the (discontinuous) solution has been a non trivial task. The mathematical theory of quasilinear hyperbolic systems of conservation laws has been used as a guideline in the development of modern shock capturing schemes. The concept of entropy condition and total variation diminishing are common to mathematical analysts and numerical analysts who deal with the problem. Another motivation for the development of shock capturing schemes is provided by the large number of applications. Complex flows in gas dynamics require the use of efficient and accurate schemes, which are able to deal with complex geometries. Unstructured mesh or adaptive mesh refinement become necessary so solve realistic problems. The schemes that are used for practical problems are usually different from the schemes for which theoretical results can be proven. For example, very little is known about the convergence property of high order schemes.

[1]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[2]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[3]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[4]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[5]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[6]  Bernard Haasdonk,et al.  Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids , 2001, Numerische Mathematik.

[7]  Gabriella Puppo,et al.  A third order central WENO scheme for 2D conservation laws , 2000 .

[8]  A. M. Anile,et al.  Cross-Validation of numerical schemes for extended hydrodynamical models of semiconductors , 2000 .

[9]  Anile,et al.  Improved hydrodynamical model for carrier transport in semiconductors. , 1995, Physical review. B, Condensed matter.

[10]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .

[11]  Vittorio Romano,et al.  Central Schemes for Balance Laws of Relaxation Type , 2000, SIAM J. Numer. Anal..

[12]  M. Trovato,et al.  Full nonlinear closure for a hydrodynamic model of transport in silicon , 1998 .

[13]  Xu-Dong Liu,et al.  Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes , 1998, SIAM J. Sci. Comput..

[14]  B. Engquist,et al.  Multi-phase computations in geometrical optics , 1996 .

[15]  R. LeVeque Numerical methods for conservation laws , 1990 .

[16]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[17]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[18]  Anile,et al.  Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors. , 1992, Physical review. B, Condensed matter.

[19]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[20]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[21]  Paul Arminjon,et al.  Convergence of a Finite Volume Extension of the Nessyahu--Tadmor Scheme on Unstructured Grids for a Two-Dimensional Linear Hyperbolic Equation , 1999 .

[22]  Doron Levy,et al.  A modified structured central scheme for 2D hyperbolic conservation laws , 1999 .

[23]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[24]  Björn Sjögreen,et al.  The Convergence Rate of Finite Difference Schemes in the Presence of Shocks , 1998 .

[25]  E. Tadmor,et al.  A fast, high resolution, second-order central scheme for incompressible flows. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Eitan Tadmor,et al.  Pointwise Error Estimates for Scalar Conservation Laws with Piecewise Smooth Solutions , 1999 .

[27]  Gabriella Puppo,et al.  High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..

[28]  E. Tadmor,et al.  Hyperbolic Problems: Theory, Numerics, Applications , 2003 .

[29]  L. Sainsaulieu,et al.  A roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave decomposition , 1997 .

[30]  G. Russo,et al.  NUMERICAL SOLUTION FOR HYDRODYNAMICAL MODELS OF SEMICONDUCTORS , 2000 .

[31]  Vittorio Romano,et al.  Extended Hydrodynamical Model of Carrier Transport in Semiconductors , 2000, SIAM J. Appl. Math..

[32]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[33]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[34]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[35]  Robert L. Pego,et al.  Nonconservative Hybrid Shock Capturing Schemes , 1993 .

[36]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[37]  J. Craggs Applied Mathematical Sciences , 1973 .

[38]  E. Tadmor,et al.  Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .

[39]  Eitan Tadmor,et al.  New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .

[40]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[41]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[42]  Richard Sanders,et al.  High resolution staggered mesh approach for nonlinear hyperbolic systems of conser-vation laws , 1992 .

[43]  Eitan Tadmor,et al.  Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations , 1997 .

[44]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[45]  M. Zennaro Natural continuous extensions of Runge-Kutta methods , 1986 .

[46]  S. Osher,et al.  High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .

[47]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[48]  Gabriella Puppo,et al.  On the behavior of the total variation in CWENO methods for conservation laws , 2000 .

[49]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[50]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[51]  Doron Levy,et al.  A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..

[52]  Paul Arminjon,et al.  A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids , 1998 .

[53]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[54]  Nikolaos Nikiforakis,et al.  Assessment of a High Resolution Centered Scheme for the Solution of Hydrodynamical Semiconductor Equations , 2000, SIAM J. Sci. Comput..

[55]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[56]  R. Gatignol Théorie cinétique des gaz à répartition discrète de vitesses , 1975 .

[57]  P. Arminjon,et al.  Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace , 1995 .

[58]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[59]  Lorenzo Pareschi,et al.  Central Differencing Based Numerical Schemes for Hyperbolic Conservation Laws with Relaxation Terms , 2001, SIAM J. Numer. Anal..

[60]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[61]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[62]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[63]  Raz Kupferman,et al.  A Numerical Study of the Axisymmetric Couette-Taylor Problem Using a Fast High-Resolution Second-Order Central Scheme , 1998, SIAM J. Sci. Comput..

[64]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .