Beyond the Grounding Bottleneck: Datalog Techniques for Inference in Probabilistic Logic Programs (Technical Report)

State-of-the-art inference approaches in probabilistic logic programming typically start by computing the relevant ground program with respect to the queries of interest, and then use this program for probabilistic inference using knowledge compilation and weighted model counting. We propose an alternative approach that uses efficient Datalog techniques to integrate knowledge compilation with forward reasoning with a non-ground program. This effectively eliminates the grounding bottleneck that so far has prohibited the application of probabilistic logic programming in query answering scenarios over knowledge graphs, while also providing fast approximations on classical benchmarks in the field.

[1]  Heiner Stuckenschmidt,et al.  Analyzing real-world SPARQL queries and ontology-based data access in the context of probabilistic data , 2017, Int. J. Approx. Reason..

[2]  Thomas Lukasiewicz,et al.  Recent Advances in Querying Probabilistic Knowledge Bases , 2018, IJCAI.

[3]  Balder ten Cate,et al.  Declarative Probabilistic Programming with Datalog , 2017, ACM Trans. Database Syst..

[4]  Luc De Raedt,et al.  Inference and learning in probabilistic logic programs using weighted Boolean formulas , 2013, Theory and Practice of Logic Programming.

[5]  Roded Sharan,et al.  SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments , 2007, ISMB/ECCB.

[6]  Jean Christoph Jung,et al.  Ontology-Mediated Queries over Probabilistic Data via Probabilistic Logic Programming , 2019, CIKM.

[7]  Fabrizio Riguzzi,et al.  The distribution semantics for normal programs with function symbols , 2016, Int. J. Approx. Reason..

[8]  David Poole,et al.  The Independent Choice Logic and Beyond , 2008, Probabilistic Inductive Logic Programming.

[9]  Catriel Beeri,et al.  On the power of magic , 1987, J. Log. Program..

[10]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[11]  Pedro M. Domingos,et al.  Deep transfer via second-order Markov logic , 2009, ICML '09.

[12]  Adnan Darwiche,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence SDD: A New Canonical Representation of Propositional Knowledge Bases , 2022 .

[13]  Guy Van den Broeck,et al.  Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory , 2015, Theory Pract. Log. Program..

[14]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[15]  Mario Alviano,et al.  Dynamic Magic Sets for Programs with Monotone Recursive Aggregates , 2011, LPNMR.

[16]  Mario Alviano,et al.  Magic Sets for disjunctive Datalog programs , 2012, Artif. Intell..

[17]  Jacopo Urbani,et al.  Column-Oriented Datalog Materialization for Large Knowledge Graphs , 2016, AAAI.

[18]  Fabrizio Riguzzi,et al.  The PITA system: Tabling and answer subsumption for reasoning under uncertainty , 2011, Theory Pract. Log. Program..

[19]  Jacopo Urbani,et al.  VLog: A Rule Engine for Knowledge Graphs , 2019, SEMWEB.

[20]  Boris Motik,et al.  Goal-Driven Query Answering for Existential Rules with Equality , 2017, AAAI.

[21]  Luc De Raedt,et al.  ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.

[22]  Luc De Raedt,et al.  TP-Compilation for inference in probabilistic logic programs , 2016, Int. J. Approx. Reason..

[23]  Raghu Ramakrishnan,et al.  Review - Magic Sets and Other Strange Ways to Implement Logic Programs , 1999, ACM SIGMOD Digit. Rev..

[24]  Jean Christoph Jung,et al.  Ontology-Based Access to Probabilistic Data with OWL QL , 2012, SEMWEB.

[25]  Luc De Raedt,et al.  Anytime Inference in Probabilistic Logic Programs with Tp-Compilation , 2015, IJCAI.

[26]  Adnan Darwiche,et al.  On probabilistic inference by weighted model counting , 2008, Artif. Intell..

[27]  Taisuke Sato,et al.  A Statistical Learning Method for Logic Programs with Distribution Semantics , 1995, ICLP.

[28]  Luc De Raedt,et al.  Explanation-Based Approximate Weighted Model Counting for Probabilistic Logics , 2014, AAAI.