An ionic thermoelectric capacitor with continuous power generation for heat harvesting

[1]  X. Crispin,et al.  Interfacial Effect Boosts the Performance of All‐Polymer Ionic Thermoelectric Supercapacitors , 2022, Advanced Materials Interfaces.

[2]  S. Pennycook,et al.  Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics , 2022, Nature Communications.

[3]  X. Tao,et al.  Gigantic Effect due to Phase Transition on Thermoelectric Properties of Ionic Sol–Gel Materials , 2022, Advanced Functional Materials.

[4]  K. Sun,et al.  Multi-ionic Hydrogel with outstanding heat-to-electrical performance for low-grade heat harvesting. , 2022, Chemistry, an Asian journal.

[5]  J. Yang,et al.  Specific behavior of transition metal chloride complexes for achieving giant ionic thermoelectric properties , 2022, npj Flexible Electronics.

[6]  Xinghua Zheng,et al.  Organic covalent modification to improve thermoelectric properties of TaS2 , 2022, Nature Communications.

[7]  Yani Chen,et al.  High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics , 2022, Science.

[8]  Dong Gyu Lee,et al.  High P- and N-Type Thermopowers in Stretchable Self-Healing Ionogels , 2022, SSRN Electronic Journal.

[9]  J. Pflaum,et al.  Tuning Electronic and Ionic Transport by Carbon‐Based Additives in Polymer Electrolytes for Thermoelectric Applications , 2022, Advanced Functional Materials.

[10]  Meng Li,et al.  Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K-1. , 2022, The journal of physical chemistry letters.

[11]  Sohyun Park,et al.  Thermopower of Molecular Junction in Harsh Thermal Environments. , 2022, Nano letters.

[12]  Liang Wang,et al.  Tailoring Intermolecular Interactions Towards High‐Performance Thermoelectric Ionogels at Low Humidity , 2022, Advanced science.

[13]  J. Yang,et al.  Giant Thermopower of Hydrogen Ion Enhanced by a Strong Hydrogen Bond System. , 2022, ACS applied materials & interfaces.

[14]  J. Jeon,et al.  Self-Healable and Stretchable Ionic-Liquid-Based Thermoelectric Composites with High Ionic Seebeck Coefficient. , 2022, Small.

[15]  Xianqing Yang,et al.  Enhancing hydrovoltaic power generation through heat conduction effects , 2022, Nature communications.

[16]  Zhiwei Chen,et al.  A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery , 2022, Nature communications.

[17]  Baoling Huang,et al.  Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing , 2022, Nature communications.

[18]  Guodong Fan,et al.  Mesoscopic Confined Ionic Thermoelectric Materials with Excellent Ionic Conductivity for Waste Heat Harvesting , 2022, Chemical Engineering Journal.

[19]  Baoling Huang,et al.  Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping , 2021, Science advances.

[20]  J. Ouyang,et al.  Giant Thermoelectric Properties of Ionogels with Cationic Doping , 2022 .

[21]  Weishu Liu,et al.  3D Hierarchical Electrodes Boosting Ultrahigh Power Output for Gelatin‐KCl‐FeCN4−/3− Ionic Thermoelectric Cells , 2022 .

[22]  J. Jeon,et al.  Self‐Healable Organic–Inorganic Hybrid Thermoelectric Materials with Excellent Ionic Thermoelectric Properties , 2021, Advanced Energy Materials.

[23]  Z. Zheng,et al.  Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance , 2021, Nature Communications.

[24]  J. Ouyang,et al.  Significant Enhancement in the Thermoelectric Properties of Ionogels through Solid Network Engineering , 2021, Advanced Functional Materials.

[25]  Bin Chen,et al.  Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions , 2021, Science advances.

[26]  X. Sui,et al.  Flexible and Robust Bacterial Cellulose‐Based Ionogels with High Thermoelectric Properties for Low‐Grade Heat Harvesting , 2021, Advanced Functional Materials.

[27]  David J. Singh,et al.  Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2 , 2021, Nature Communications.

[28]  X. Crispin,et al.  The Interfacial Effect on the Open Circuit Voltage of Ionic Thermoelectric Devices with Conducting Polymer Electrodes , 2021, Advanced Electronic Materials.

[29]  X. Crispin,et al.  Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. , 2021, Chemical reviews.

[30]  Xizu Wang,et al.  Simultaneous enhancements in the Seebeck coefficient and conductivity of PEDOT:PSS by blending ferroelectric BaTiO3 nanoparticles , 2021, Journal of Materials Chemistry A.

[31]  Jingsheng Chen,et al.  Photo-enhanced Seebeck effect of a highly conductive thermoelectric material , 2021, Journal of Materials Chemistry A.

[32]  G. J. Snyder,et al.  High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity , 2021, Nature Communications.

[33]  J. Ouyang,et al.  A mixed ion-electron conducting carbon nanotube ionogel to efficiently harvest heat from both a temperature gradient and temperature fluctuation , 2021 .

[34]  Yong-liang Yu,et al.  Entropy engineering promotes thermoelectric performance in p-type chalcogenides , 2021, Nature Communications.

[35]  Md. Zahidul Islam,et al.  Embedding Aligned Graphene Oxides in Polyelectrolytes to Facilitate Thermo‐Diffusion of Protons for High Ionic Thermoelectric Figure‐of‐Merit , 2021, Advanced Functional Materials.

[36]  Zong-liang Du,et al.  Highly Stretchable PU Ionogels with Self-Healing Capability for a Flexible Thermoelectric Generator. , 2021, ACS applied materials & interfaces.

[37]  Hyejin Ju,et al.  Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation , 2021, Nature Communications.

[38]  J. Ouyang,et al.  Visible light-induced enhancement in the Seebeck coefficient of PEDOT:PSS composites with two-dimensional potassium poly-(heptazine imide) , 2021, Journal of Materials Chemistry A.

[39]  X. Crispin,et al.  The role of absorbed water in ionic liquid cellulosic electrolytes for ionic thermoelectrics , 2021, Journal of Materials Chemistry C.

[40]  Lei Zhang,et al.  Stretchable and Transparent Ionogels with High Thermoelectric Properties , 2020, Advanced Functional Materials.

[41]  K. Ishida,et al.  Outstanding Electrode-Dependent Seebeck Coefficients in Ionic Hydrogels for Thermally Chargeable Supercapacitor near Room Temperature. , 2020, ACS applied materials & interfaces.

[42]  J. Jeon,et al.  Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect , 2020 .

[43]  J. Ouyang,et al.  Ultrahigh Thermoelectric Power Generation from Both Ion Diffusion by Temperature Fluctuation and Hole Accumulation by Temperature Gradient , 2020, Advanced Energy Materials.

[44]  Kwok Hoe Chan,et al.  Scalable thermoelectric fibers for multifunctional textile-electronics , 2020, Nature Communications.

[45]  J. Ouyang,et al.  Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties , 2020 .

[46]  Lidong Chen,et al.  Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices , 2020, Nature Communications.

[47]  Gang Chen,et al.  Giant thermopower of ionic gelatin near room temperature , 2020, Science.

[48]  X. Crispin,et al.  Elastic conducting polymer composites in thermoelectric modules , 2020, Nature Communications.

[49]  Xiangyu You,et al.  Electrically Conductive Tough Gelatin Hydrogel , 2020, Advanced Electronic Materials.

[50]  J. Ouyang,et al.  Flexible Quasi‐Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties , 2019, Advanced Energy Materials.

[51]  Sohyun Park,et al.  Structure–thermopower relationships in molecular thermoelectrics , 2019, Journal of Materials Chemistry A.

[52]  Andreas Willfahrt,et al.  Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles , 2019, Nature Communications.

[53]  Qin Yao,et al.  High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator , 2018, Nature Communications.

[54]  Anthony P. Straub,et al.  Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity , 2018 .

[55]  G. Fang,et al.  An overview of thermal energy storage systems , 2018 .

[56]  I. Sârbu,et al.  A Comprehensive Review of Thermal Energy Storage , 2018 .

[57]  Alessandro Romagnoli,et al.  Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations , 2017 .

[58]  Jürgen Köhler,et al.  Method for designing waste heat recovery systems (WHRS) in vehicles considering optimal control , 2017 .

[59]  X. Crispin,et al.  Ionic thermoelectric paper , 2017 .

[60]  Nasiru I. Ibrahim,et al.  A review on current status and challenges of inorganic phase change materials for thermal energy storage systems , 2017 .

[61]  X. Crispin,et al.  Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors , 2017 .

[62]  E. Meyhofer,et al.  Perspective: Thermal and thermoelectric transport in molecular junctions , 2017 .

[63]  X. Crispin,et al.  Ionic thermoelectric supercapacitors , 2016 .

[64]  Meagan S Mauter,et al.  Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation. , 2015, Environmental science & technology.

[65]  N. Qazvini,et al.  Ionic Conductivity in Gelatin-Based Hybrid Solid Electrolytes: The Non-trivial Role of Nanoclay , 2014 .

[66]  Nils Schüler,et al.  Development of a thermal oil operated waste heat exchanger within the off-gas of an electric arc furnace at steel mills , 2014 .

[67]  L. Rodrigues,et al.  Novel polymer electrolytes based on gelatin and ionic liquids , 2012 .

[68]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[69]  Agnieszka Pawlicka,et al.  Conductivity study of a gelatin-based polymer electrolyte , 2007 .

[70]  Xiang Chen,et al.  Effect of cooling water flow rates on local temperatures and heat transfer of casting dies , 2004 .