A Simplified CFD Model With Multi-Periodic Boundary Conditions for Cross Wavy Channels
暂无分享,去创建一个
The compact and efficient primary surface heat exchangers are often used as recuperators in microturbine regenerative cycle systems. In the present study, the flow and the heat transfer performance of the cross wavy (CW) ducts have been simulated by three-dimensional models. The hydrodynamic diameters of the models are 1.689mm. Navier-Stokes and energy equations are solved by COMSOL3.5. Because one single wavy cell will overlap more than one adjacent channel, multi-periodic boundary conditions are especially adopted to simplify the calculations. Multi-periodic boundary conditions have been proved to have more reasonable flow field and heat transfer coefficient compared with the literature results. A dimensionless parameter L/A (wave length L, internal height of the corrugation in flow direction A) is defined as the optimization target. The numerical results indicated that when L/A = 6, the CW channel has the best comprehensive performance in all the cases. The comprehensive performances of the CW ducts are evaluated by the j/f (heat transfer factor j and friction factor f). The flow and heat transfer characteristics are much more complex in the cross wavy channels, especially when L/A is small.Copyright © 2011 by ASME