Review on floating wave-wind energy converter plants: Nonlinear dynamic assessment tools

[1]  B. Cazzolato,et al.  The Prospect of Combining a Point Absorber Wave Energy Converter with a Floating Offshore Wind Turbine , 2021, Energies.

[2]  Saghy Saeidtehrani,et al.  Flap-type wave energy converter arrays: Nonlinear dynamic analysis , 2021 .

[3]  M. Karimirad,et al.  Multipurpose breakwater: Hydrodynamic analysis of flap-type wave energy converter array integrated to a breakwater , 2021 .

[4]  Francisco Taveira-Pinto,et al.  Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review , 2021 .

[5]  E. Bachynski,et al.  Experimental and numerical investigation of nonlinear diffraction wave loads on a semi-submersible wind turbine , 2021, Renewable Energy.

[6]  Puyang Zhang,et al.  Numerical investigation on the dynamic responses of three integrated concepts of offshore wind and wave energy converter , 2020 .

[7]  Aliashim Albani,et al.  Wave-Activated-Body Energy Converters Technologies: A Review , 2020, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.

[8]  Dongsheng Qiao,et al.  Review of Wave Energy Converter and Design of Mooring System , 2020, Sustainability.

[9]  G. Bernardini,et al.  Control of power generated by a floating offshore wind turbine perturbed by sea waves , 2020 .

[10]  Malin Göteman,et al.  Wave Energy Converter Power Take-Off System Scaling and Physical Modelling , 2020, Journal of Marine Science and Engineering.

[11]  Ould el Moctar,et al.  Towards credible CFD simulations for floating offshore wind turbines , 2020 .

[12]  Sébastien Gueydon,et al.  Discussion of solutions for basin model tests of FOWTs in combined waves and wind , 2020 .

[13]  Ryozo Nagamune,et al.  Platform position control of floating wind turbines using aerodynamic force , 2020 .

[14]  C. Michailides,et al.  Hydrodynamic Response of a Combined Wind–Wave Marine Energy Structure , 2020, Journal of Marine Science and Engineering.

[15]  H. Hao,et al.  A state-of-the-art review on the vibration mitigation of wind turbines , 2020 .

[16]  R.P.F. Gomes,et al.  Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests , 2020 .

[17]  Ian Masters,et al.  Computational modelling and experimental tank testing of the multi float WaveSub under regular wave forcing , 2020, Renewable Energy.

[18]  K. McTiernan,et al.  Review of Hybrid Offshore Wind and Wave Energy Systems , 2020, Journal of Physics: Conference Series.

[19]  L. Castro-Santos,et al.  A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies , 2019, International journal of environmental research and public health.

[20]  G. Iglesias,et al.  Monopile-mounted wave energy converter for a hybrid wind-wave system , 2019, Energy Conversion and Management.

[21]  Lorenzo Fagiano,et al.  Future emerging technologies in the wind power sector: A European perspective , 2019, Renewable and Sustainable Energy Reviews.

[22]  T. Moan,et al.  A study on fully nonlinear wave load effects on floating wind turbine , 2019, Journal of Fluids and Structures.

[23]  Tongguang Wang,et al.  Foundations of offshore wind turbines: A review , 2019, Renewable & Sustainable Energy Reviews.

[24]  T. Tezdogan,et al.  Investigation on long-term extreme response of an integrated offshore renewable energy device with a modified environmental contour method , 2019, Renewable Energy.

[25]  A. Kolios,et al.  Critical review of floating support structures for offshore wind farm deployment , 2018, Journal of Physics: Conference Series.

[26]  Liang Li,et al.  Short-term extreme response and fatigue damage of an integrated offshore renewable energy system , 2018, Renewable Energy.

[27]  Salvy Bourguet,et al.  Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies , 2018, Energies.

[28]  Mário J. G. C. Mendes,et al.  Numerical and Experimental Analysis of a Hybrid Wind-Wave Offshore Floating Platform’s Hull , 2018, Volume 11A: Honoring Symposium for Professor Carlos Guedes Soares on Marine Technology and Ocean Engineering.

[29]  T. Ishihara,et al.  Nonlinear wave effects on dynamic responses of a semisubmersible floating offshore wind turbine in the intermediate water , 2018, Journal of Physics: Conference Series.

[30]  B. Epureanu,et al.  A review of foundations of offshore wind energy convertors: Current status and future perspectives , 2018 .

[31]  S. Bhattacharya,et al.  Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction , 2018 .

[32]  Yan Gao,et al.  Dynamic response and power production of a floating integrated wind, wave and tidal energy system , 2018 .

[33]  Mario Lopez,et al.  Numerical modelling of the CECO wave energy converter , 2017 .

[34]  John Ringwood,et al.  Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review , 2017 .

[35]  Aun Haider,et al.  Review of ocean tidal, wave and thermal energy technologies , 2017 .

[36]  Torgeir Moan,et al.  Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type Wave Energy Converters , 2016 .

[37]  C. Eskilsson,et al.  Dynamically Scaled Model Experiment of a Mooring Cable , 2016 .

[38]  Sanjay R. Arwade,et al.  Strength, stiffness, resonance and the design of offshore wind turbine monopiles , 2015 .

[39]  A. Babarit,et al.  Theoretical and numerical aspects of the open source BEM solver NEMOH , 2015 .

[40]  Gregorio Iglesias,et al.  A review of combined wave and offshore wind energy , 2015 .

[41]  Torgeir Moan,et al.  Effect of Flap Type Wave Energy Converters on the Response of a Semi-Submersible Wind Turbine in Operational Conditions , 2014 .

[42]  Jon Andreu,et al.  Review of wave energy technologies and the necessary power-equipment , 2013 .

[43]  Torgeir Moan,et al.  STC (Spar-Torus Combination): A Combined Spar-Type Floating Wind Turbine and Large Point Absorber Floating Wave Energy Converter — Promising and Challenging , 2012 .

[44]  P. Bauer,et al.  Wave Energy Converter Concepts : Design Challenges and Classification , 2012, IEEE Industrial Electronics Magazine.

[45]  Aurélien Babarit,et al.  Numerical benchmarking study of a selection of wave energy converters , 2012 .

[46]  Jeom Kee Paik,et al.  Ship Structural Analysis and Design , 2010 .

[47]  James F. Manwell,et al.  Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results , 2006 .

[48]  G. Houlsby,et al.  Foundations for offshore wind turbines , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  A. Mazzino,et al.  Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea , 2020 .

[50]  Guangya Yang,et al.  A review of offshore wind farm layout optimization and electrical system design methods , 2019, Journal of Modern Power Systems and Clean Energy.

[51]  Jin Wang,et al.  Development and Validation of an Aero-Hydro Simulation Code for an Offshore Floating Wind Turbine , 2015 .

[52]  Subhamoy Bhattacharya,et al.  Challenges in Design of Foundations for Offshore Wind Turbines , 2014 .

[53]  T. Moan,et al.  Optimal Geometries for Wave Absorbers Oscillating About a Fixed Axis , 2013, IEEE Journal of Oceanic Engineering.

[54]  Magagna Davide,et al.  Overview of European innovation activities in marine energy technology , 2013 .

[55]  Erin Elizabeth Bachynski,et al.  Global Analysis of Floating Wind Turbines: Code Development, Model Sensitivity And Benchmark Study , 2012 .

[56]  Duncan Rath Kopp,et al.  Foundations for an offshore wind turbine , 2010 .

[57]  T. Moan,et al.  Mooring system analysis of multiple wave energy converters in a farm configuration , 2009 .

[58]  Finn Gunnar Nielsen,et al.  Integrated Dynamic Analysis of Floating Offshore Wind Turbines , 2006 .

[59]  S. Bang,et al.  Effect of soil on mooring system dynamics , 1995 .