Assembly of outer-membrane proteins in bacteria and mitochondria.

The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic alpha-helices, integral outer-membrane proteins (OMPs) form beta-barrels. Similar beta-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these beta-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of beta-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial beta-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.

[1]  J. Tommassen,et al.  Outer membrane composition of a lipopolysaccharide‐deficient Neisseria meningitidis mutant , 2001, The EMBO journal.

[2]  J. Tommassen,et al.  Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain , 2007, EMBO reports.

[3]  R. C. Judd,et al.  Omp85 proteins of Neisseria gonorrhoeae and Neisseria meningitidis are similar to Haemophilus influenzae D-15-Ag and Pasteurella multocida Oma87. , 1998, Microbial pathogenesis.

[4]  I. Henderson,et al.  Fold and function of polypeptide transport‐associated domains responsible for delivering unfolded proteins to membranes , 2008, Molecular microbiology.

[5]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[6]  Alexandre M J J Bonvin,et al.  Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium , 2009, Proceedings of the National Academy of Sciences.

[7]  M. Sousa,et al.  Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. , 2004, Molecular cell.

[8]  Sebastian Hiller,et al.  References and Notes Supporting Online Material Materials and Methods Figures S1 to S5 Table S1 References Solution Structure of the Integral Human Membrane Protein Vdac-1 in Detergent Micelles , 2022 .

[9]  Michael Habeck,et al.  Structure of the human voltage-dependent anion channel , 2008, Proceedings of the National Academy of Sciences.

[10]  J. Tommassen,et al.  Biogenesis of the Gram-negative bacterial outer membrane. , 2004, Current opinion in microbiology.

[11]  Omp85 proteins ofNeisseria gonorrhoeaeandNeisseria meningitidisare similar toHaemophilus influenzaeD-15-Ag andPasteurella multocidaOma87 , 1998 .

[12]  Walter Neupert,et al.  Evolutionary conservation of biogenesis of β-barrel membrane proteins , 2003, Nature.

[13]  Peipei Ping,et al.  The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating , 2008, Proceedings of the National Academy of Sciences.

[14]  J. Tommassen,et al.  Signals in bacterial β-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria , 2009, Proceedings of the National Academy of Sciences.

[15]  T. Lithgow,et al.  Importing Mitochondrial Proteins: Machineries and Mechanisms , 2009, Cell.

[16]  T. Silhavy,et al.  YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli , 2006, Molecular microbiology.

[17]  H. Saibil,et al.  Structural basis for the regulated protease and chaperone function of DegP , 2008, Nature.

[18]  C. Elkins,et al.  Cloning, Overexpression, Purification, and Immunobiology of an 85-Kilodalton Outer Membrane Protein fromHaemophilus ducreyi , 2001, Infection and Immunity.

[19]  D. Missiakas,et al.  Changes in lipopolysaccharide structure induce the σE‐dependent response of Escherichia coli , 2005 .

[20]  N. Pfanner,et al.  An Essential Role of Sam50 in the Protein Sorting and Assembly Machinery of the Mitochondrial Outer Membrane* , 2003, Journal of Biological Chemistry.

[21]  J. Tommassen,et al.  Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly. , 2004, Research in microbiology.

[22]  U. Henning,et al.  Aperiplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins , 1996 .

[23]  I. Korndörfer,et al.  Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture , 2004, Nature Structural &Molecular Biology.

[24]  M. Fussenegger,et al.  A novel peptidoglycan‐linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae , 1996, Molecular microbiology.

[25]  N. Pfanner,et al.  Sam35 of the Mitochondrial Protein Sorting and Assembly Machinery Is a Peripheral Outer Membrane Protein Essential for Cell Viability* , 2004, Journal of Biological Chemistry.

[26]  Kentaro Inoue,et al.  Two evolutionarily conserved essential beta-barrel proteins in the chloroplast outer envelope membrane. , 2009, Bioscience trends.

[27]  C. Gross,et al.  The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity , 2001, The EMBO journal.

[28]  J. Tommassen,et al.  Export and localization of N-terminally truncated derivatives of Escherichia coli K-12 outer membrane protein PhoE. , 1988, The Journal of biological chemistry.

[29]  D. Vertommen,et al.  Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics , 2009, Proteomics.

[30]  J. Tommassen,et al.  The mitochondrial porin, VDAC, has retained the ability to be assembled in the bacterial outer membrane. , 2010, Molecular biology and evolution.

[31]  B. Schönfisch,et al.  Machinery for protein sorting and assembly in the mitochondrial outer membrane , 2003, Nature.

[32]  J. Tommassen,et al.  Role of a Highly Conserved Bacterial Protein in Outer Membrane Protein Assembly , 2003, Science.

[33]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[34]  J. Tommassen,et al.  Biogenesis of β-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence , 2009, Cellular and Molecular Life Sciences.

[35]  Daniel Kahne,et al.  Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[36]  M. Sousa,et al.  Crystal structure of YaeT: conformational flexibility and substrate recognition. , 2008, Structure.

[37]  J. Tommassen,et al.  Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. , 1991, Journal of molecular biology.

[38]  B. Zomer,et al.  Meningitis bacterium is viable without endotoxin , 1998, Nature.

[39]  T. Silhavy,et al.  Genetic Evidence for Parallel Pathways of Chaperone Activity in the Periplasm of Escherichia coli , 2001, Journal of bacteriology.

[40]  N. Pfanner,et al.  Multistep assembly of the protein import channel of the mitochondrial outer membrane , 2001, Nature Structural Biology.

[41]  A. Valencia,et al.  POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. , 2003, Trends in biochemical sciences.

[42]  R. Waller,et al.  The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria , 2004, The Journal of cell biology.

[43]  J. Tommassen,et al.  Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. , 1999, European journal of biochemistry.

[44]  J. Tommassen,et al.  Outer-membrane PhoE protein of Escherichia coli K-12 as an exposure vector: possibilities and limitations. , 1990, Gene.

[45]  Piotr Sliz,et al.  Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine , 2007, Science.

[46]  Y. Sugita,et al.  Conformational transition of Sec machinery inferred from bacterial SecYE structures , 2008, Nature.

[47]  C. Andersen,et al.  Characterization of pores formed by YaeT (Omp85) from Escherichia coli. , 2006, Journal of biochemistry.

[48]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[49]  W. Neupert,et al.  Biogenesis of Porin of the Outer Mitochondrial Membrane Involves an Import Pathway via Receptors and the General Import Pore of the Tom Complex , 2001, The Journal of cell biology.

[50]  T. Endo,et al.  Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly , 2004, The Journal of cell biology.

[51]  P. Valentin‐Hansen,et al.  Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. , 2006, Journal of molecular biology.

[52]  W. Neupert,et al.  Biogenesis of Tom40, Core Component of the Tom Complex of Mitochondria , 1999, The Journal of cell biology.

[53]  J. Tommassen,et al.  In vitro folding of Escherichia coli outer-membrane phospholipase A. , 1995, European journal of biochemistry.

[54]  Thomas Becker,et al.  Dissecting Membrane Insertion of Mitochondrial β-Barrel Proteins , 2008, Cell.

[55]  K. Keegstra,et al.  The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Kolter,et al.  SurA assists the folding of Escherichia coli outer membrane proteins , 1996, Journal of bacteriology.

[57]  A. Pardi,et al.  The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains , 2009, Proceedings of the National Academy of Sciences.

[58]  T. Lithgow,et al.  Protein secretion and outer membrane assembly in Alphaproteobacteria , 2008, FEMS microbiology reviews.

[59]  Daniel Kahne,et al.  Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. , 2007, Genes & development.

[60]  M. Kleerebezem,et al.  Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. , 1997, Journal of molecular biology.

[61]  Matthias Müller,et al.  Skp, a Molecular Chaperone of Gram-negative Bacteria, Is Required for the Formation of Soluble Periplasmic Intermediates of Outer Membrane Proteins* , 1999, The Journal of Biological Chemistry.

[62]  J. Tommassen,et al.  The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis , 2009, Journal of bacteriology.

[63]  J. Tommassen,et al.  Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Mokranjac,et al.  Tob38, a novel essential component in the biogenesis of β‐barrel proteins of mitochondria , 2004, EMBO reports.

[65]  A. Costanzo,et al.  Growth Phase-Dependent Regulation of the Extracytoplasmic Stress Factor, σE, by Guanosine 3′,5′-Bispyrophosphate (ppGpp) , 2006, Journal of bacteriology.

[66]  D. Rapaport,et al.  Biogenesis of mitochondrial outer membrane proteins. , 2009, Biochimica et biophysica acta.

[67]  E. Bottreau,et al.  Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella. , 2009, Microbiology.

[68]  M. Ehrmann,et al.  A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein , 1999, Cell.

[69]  G. Koningstein,et al.  The Early Interaction of the Outer Membrane Protein PhoE with the Periplasmic Chaperone Skp Occurs at the Cytoplasmic Membrane* , 2001, The Journal of Biological Chemistry.

[70]  The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins , 2007, The Journal of Cell Biology.

[71]  U. Henning,et al.  A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. , 1996, Molecular microbiology.

[72]  J. Tommassen,et al.  Assembly Factor Omp85 Recognizes Its Outer Membrane Protein Substrates by a Species-Specific C-Terminal Motif , 2006, PLoS biology.

[73]  Sri H. Ramarathinam,et al.  A Modular BAM Complex in the Outer Membrane of the α-Proteobacterium Caulobacter crescentus , 2010, PloS one.

[74]  J. Vogel,et al.  σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay , 2006, Molecular microbiology.

[75]  C. Gross,et al.  SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. , 1996, Genes & development.

[76]  K. Nakamura,et al.  Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K-12. , 1976, Journal of biochemistry.

[77]  J. Tommassen,et al.  MsbA Is Not Required for Phospholipid Transport in Neisseria meningitidis* , 2005, Journal of Biological Chemistry.

[78]  T. Silhavy,et al.  Sensing external stress: watchdogs of the Escherichia coli cell envelope. , 2005, Current opinion in microbiology.

[79]  Daniel Kahne,et al.  Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli , 2005, Cell.