Silicon nanostructures for photonics and photovoltaics.

Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material.

[1]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[2]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[3]  A. Patz,et al.  Role of Oxygen , 1981 .

[4]  P. W. Hochachka The Role of Oxygen Oxygen and Living Processes: An Interdisciplinary Approach Daniel Gilbert , 1982 .

[5]  E. Yablonovitch Statistical ray optics , 1982 .

[6]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[7]  G. Davies,et al.  The optical properties of luminescence centres in silicon , 1989 .

[8]  Weber,et al.  Near-band-gap photoluminescence of Si-Ge alloys. , 1989, Physical review. B, Condensed matter.

[9]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[10]  Anthony J. Kenyon,et al.  OPTICAL-PROPERTIES OF PECVD ERBIUM-DOPED SILICON-RICH SILICA - EVIDENCE FOR ENERGY-TRANSFER BETWEEN SILICON MICROCLUSTERS AND ERBIUM IONS , 1994 .

[11]  Jury V. Vandyshev,et al.  Blue emission in porous silicon: Oxygen-related photoluminescence. , 1994, Physical review. B, Condensed matter.

[12]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[13]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[14]  Keiichi Yamamoto,et al.  Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrices , 1997 .

[15]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[16]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[17]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[18]  Susan M. Kauzlarich,et al.  Synthesis of Alkyl-Terminated Silicon Nanoclusters by a Solution Route , 1999 .

[19]  F. Koch,et al.  Optical Properties of Si Nanocrystals , 1999 .

[20]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[21]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[22]  Joel Therrien,et al.  Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles , 2000 .

[23]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[24]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[25]  Domenico Pacifici,et al.  Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals , 2001 .

[26]  M. Räsänen,et al.  Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses , 2001 .

[27]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[28]  Maria Miritello,et al.  Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices , 2002 .

[29]  B. Jalali,et al.  Stimulated Raman scattering in silicon waveguides , 2002 .

[30]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[31]  F. Priolo,et al.  Electroluminescence of silicon nanocrystals in MOS structures , 2002 .

[32]  Electro-optics Conference on lasers and electro-optics (CLEO) , 2003 .

[33]  Lorenzo Pavesi,et al.  Light Emitting Silicon for Microphotonics , 2003 .

[34]  Lorenzo Pavesi,et al.  Dynamics of stimulated emission in silicon nanocrystals , 2003 .

[35]  L. D. Negro,et al.  Stimulated emission in nanocrystalline silicon superlattices , 2003 .

[36]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[37]  M. Fujii,et al.  Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals , 2003 .

[38]  B. Jalali,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[39]  F. Priolo,et al.  Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO 2 , 2003 .

[40]  Christophe Delerue,et al.  Nanostructures: Theory and Modelling , 2004 .

[41]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[42]  Tom Gregorkiewicz,et al.  Sensitization of Er luminescence by Si nanoclusters , 2004 .

[43]  F. Priolo,et al.  Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films , 2004 .

[44]  J. Likforman,et al.  Optical gain in porous silicon grains embedded in sol-gel derived SiO2 matrix under femtosecond excitation , 2004 .

[45]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[46]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[47]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[48]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[49]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[50]  Anthony J. Kenyon,et al.  Erbium in silicon , 2005 .

[51]  S. Ossicini,et al.  Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in Si O 2 : Beyond the quantum confinement effect , 2005 .

[52]  Kazumi Wada,et al.  High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform , 2005 .

[53]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[54]  Masaya Notomi,et al.  Optical bistable switching action of Si high-Q photonic-crystal nanocavities. , 2005, Optics express.

[55]  Jan Valenta,et al.  Colloidal suspensions of silicon nanocrystals: from single nanocrystals to photonic structures , 2005 .

[56]  J. Valenta,et al.  Narrow luminescence linewidth of a silicon quantum dot. , 2005, Physical review letters.

[57]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[58]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[59]  Masayuki Fujita,et al.  Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals , 2005, Science.

[60]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[61]  J. Veinot,et al.  Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. , 2006, Chemical communications.

[62]  Shashank Sharma,et al.  Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires. , 2006, Nano letters.

[63]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[64]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[65]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[66]  F. Gan,et al.  CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band , 2007, IEEE Photonics Technology Letters.

[67]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[68]  Masaya Notomi,et al.  Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities , 2007 .

[69]  Omri Raday,et al.  Low-threshold continuous-wave Raman silicon laser , 2007 .

[70]  Yasuhiko Arakawa,et al.  Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature , 2007 .

[71]  Zhipeng Huang,et al.  Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. , 2008, Nano letters.

[72]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[73]  T. Gregorkiewicz,et al.  Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications , 2008 .

[74]  M. Notomi,et al.  Ultrahigh-Q nanocavity with 1D photonic gap. , 2008, Optics express.

[75]  F. Lederer,et al.  Employing dielectric diffractive structures in solar cells – a numerical study , 2008 .

[76]  S. Kodambaka,et al.  Kinetics of Individual Nucleation Events Observed in Nanoscale Vapor-Liquid-Solid Growth , 2008, Science.

[77]  T. Hanrath,et al.  In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. , 2008, Nano letters.

[78]  G Van Tendeloo,et al.  Classification and control of the origin of photoluminescence from Si nanocrystals. , 2008, Nature nanotechnology.

[79]  U. Kortshagen,et al.  Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies. , 2008, Physical review letters.

[80]  L. De Cola,et al.  Alkyl-functionalized oxide-free silicon nanoparticles: synthesis and optical properties. , 2008, Small.

[81]  Ken-Tye Yong,et al.  Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. , 2008, Nano letters.

[82]  E Fred Schubert,et al.  Realization of a near-perfect antireflection coating for silicon solar energy utilization. , 2008, Optics letters.

[83]  V. Dubrovskii,et al.  Growth kinetics and crystal structure of semiconductor nanowires , 2008 .

[84]  M. Green,et al.  Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix , 2008, Nanotechnology.

[85]  N. Brookes,et al.  Direct quantification of gold along a single Si nanowire. , 2008, Nano letters.

[86]  T. Gregorkiewicz,et al.  Energy transfer processes in Er-doped SiO2 sensitized with Si nanocrystals , 2008, 0806.0960.

[87]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[88]  L. O'Faolain,et al.  Green light emission in silicon through slow light enhanced third-harmonic generation in photonic crystal waveguides , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[89]  S. Combrie,et al.  Directive emission from high-Q photonic crystal cavities through band folding , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[90]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[91]  S. Ossicini,et al.  Effects of simultaneous doping with boron and phosphorous on the structural, electronic and optical properties of silicon nanostructures , 2009 .

[92]  I. Pelant,et al.  Optical gain at the F-band of oxidized silicon nanocrystals , 2009 .

[93]  T. Gregorkiewicz,et al.  Photonic Properties of Er-Doped Crystalline Silicon , 2009, Proceedings of the IEEE.

[94]  Mark T. Swihart,et al.  Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum , 2009 .

[95]  Federico Capasso,et al.  On the temperature dependence of point-defect-mediated luminescence in silicon , 2009 .

[96]  A. Brewer,et al.  In situ passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method , 2009 .

[97]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[98]  N. Koshida Device Applications of Silicon Nanocrystals and Nanostructures , 2009 .

[99]  A. Gawlik,et al.  Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. , 2009, Nano letters.

[100]  Luca Dal Negro,et al.  Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities. , 2010, Optics express.

[101]  Masaya Notomi,et al.  Manipulating light with strongly modulated photonic crystals , 2010 .

[102]  T. Krauss,et al.  Loss engineered slow light waveguides. , 2010, Optics express.

[103]  M. Kaniber,et al.  Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities , 2009, 0912.0774.

[104]  Liam O'Faolain,et al.  Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities. , 2010, Optics express.

[105]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[106]  I. Pelant,et al.  White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size , 2010 .

[107]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[108]  Rui Li,et al.  Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes , 2010 .

[109]  Barbara K. Hughes,et al.  Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. , 2010, Nano letters.

[110]  U. Kortshagen,et al.  Optimization of Si NC/P3HT Hybrid Solar Cells , 2010 .

[111]  N. Daldosso,et al.  Energy transfer mechanism and Auger effect in Er3+ coupled silicon nanoparticle samples , 2010 .

[112]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[113]  T. Gregorkiewicz,et al.  Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. , 2010, Nature nanotechnology.

[114]  Thomas Käsebier,et al.  Conformal Transparent Conducting Oxides on Black Silicon , 2010, Advanced materials.

[115]  Christian Leiterer,et al.  Optical properties of individual silicon nanowires for photonic devices. , 2010, ACS nano.

[116]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[117]  Shrestha Basu Mallick,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells , 2010, Photonics Europe.

[118]  F. Priolo,et al.  Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices , 2010 .

[119]  Yossi Rosenwaks,et al.  Measurement of active dopant distribution and diffusion in individual silicon nanowires. , 2010, Nano letters.

[120]  Axel Scherer,et al.  Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars. , 2010, Nano letters.

[121]  T. Krauss,et al.  Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. , 2010, Optics express.

[122]  Luca Dal Negro,et al.  Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[123]  Lorenzo Pavesi,et al.  Silicon Nanocrystals Fundamentals Synthesis and Applications , 2010 .

[124]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[125]  C. Tsang,et al.  Fabrication of n-type mesoporous silicon nanowires by one-step etching. , 2011, Nano letters (Print).

[126]  Susumu Noda,et al.  Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million. , 2011, Optics express.

[127]  E Koren,et al.  Obtaining uniform dopant distributions in VLS-grown Si nanowires. , 2011, Nano letters.

[128]  Yossi Rosenwaks,et al.  Direct measurement of individual deep traps in single silicon nanowires. , 2011, Nano letters.

[129]  Masaya Notomi,et al.  20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. , 2011, Optics express.

[130]  J. Valenta,et al.  Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires. , 2011, Nano letters.

[131]  Thomas F. Krauss,et al.  Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities , 2011 .

[132]  Liam O'Faolain,et al.  Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. , 2011, Optics express.

[133]  Rebecca J. Anthony,et al.  High-efficiency silicon nanocrystal light-emitting devices. , 2011, Nano letters.

[134]  M. Fujii,et al.  Room-temperature below bulk-Si band gap photoluminescence from P and B co-doped and compensated Si nanocrystals with narrow size distributions , 2011 .

[135]  J. Valenta,et al.  Step-like enhancement of luminescence quantum yield of silicon nanocrystals. , 2011, Nature nanotechnology.

[136]  T. Krauss,et al.  Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. , 2011, Optics letters.

[137]  Liam O'Faolain,et al.  Fabrication and characterization of photonic crystal slow light waveguides and cavities. , 2012, Journal of visualized experiments : JoVE.

[138]  O Jambois,et al.  Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation , 2012, Nanotechnology.

[139]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[140]  T. Krauss,et al.  Engineering gratings for light trapping in photovoltaics: The supercell concept , 2012 .

[141]  Ulrich W. Paetzold,et al.  Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts , 2012 .

[142]  S. Noda,et al.  Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics , 2012, 1203.0363.

[143]  S. T. Picraux,et al.  Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p-n junctions. , 2012, Nano letters.

[144]  Guillaume Demésy,et al.  Solar energy trapping with modulated silicon nanowire photonic crystals , 2012 .

[145]  Lucio Claudio Andreani,et al.  Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells. , 2012, Optics letters.

[146]  F. Priolo,et al.  Temperature dependence and aging effects on silicon nanowires photoluminescence. , 2012, Optics express.

[147]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[148]  Xuejun Xu,et al.  High-Quality-Factor Light-Emitting Diodes with Modified Photonic Crystal Nanocavities Including Ge Self-Assembled Quantum Dots on Silicon-On-Insulator Substrates , 2012 .

[149]  Nanowire device concepts for thin film photovoltaics , 2012 .

[150]  L. Dal Negro,et al.  Nanopatterning of silicon nanowires for enhancing visible photoluminescence. , 2012, Nanoscale.

[151]  T. Gregorkiewicz,et al.  Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption , 2012, Nature Photonics.

[152]  Ultrathin crystalline-silicon solar cells with embedded photonic crystals , 2012 .

[153]  Yasuhiko Arakawa,et al.  Enhancement of Light Emission from Silicon by Utilizing Photonic Nanostructures , 2012, IEICE Trans. Electron..

[154]  Dario Gerace,et al.  Single-photon nonlinear optics with Kerr-type nanostructured materials , 2012, 1201.5072.

[155]  M. Stutzmann,et al.  Low‐Cost Post‐Growth Treatments of Crystalline Silicon Nanoparticles Improving Surface and Electronic Properties , 2012 .

[156]  Thomas Käsebier,et al.  Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition , 2012 .

[157]  M. Govoni,et al.  Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics , 2012, Nature Photonics.

[158]  Xuejun Xu,et al.  Silicon-Based Light-Emitting Devices Based on Ge Self-Assembled Quantum Dots Embedded in Optical Cavities , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[159]  E. Yablonovitch,et al.  Inverse design of a nano-scale surface texture for light trapping , 2012, Conference on Lasers and Electro-Optics.

[160]  Kapil Debnath,et al.  Cascaded modulator architecture for WDM applications. , 2012, Optics express.

[161]  J. Valenta,et al.  Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots. , 2012, Small.

[162]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[163]  Lucio Claudio Andreani,et al.  Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. , 2012, Optics express.

[164]  M. Galli,et al.  Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique , 2012, Nanotechnology.

[165]  T. F. Krauss,et al.  Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths , 2013, 1306.5537.

[166]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[167]  Jianying Zhou,et al.  Deterministic quasi-random nanostructures for photon control , 2013, Nature Communications.

[168]  Yoshitaka Inui,et al.  A micrometre-scale Raman silicon laser with a microwatt threshold , 2013, Nature.

[169]  T. Gregorkiewicz,et al.  Experimental investigation and modeling of Auger recombination in silicon nanocrystals , 2013 .

[170]  T. Krauss,et al.  Enhanced 1.54 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities. , 2013, Optics express.

[171]  J. Valenta,et al.  Transition from silicon nanowires to isolated quantum dots : Optical and structural evolution , 2013 .

[172]  T. Gregorkiewicz,et al.  Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution , 2013 .

[173]  Tom Gregorkiewicz,et al.  Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission , 2013, Light: Science & Applications.

[174]  B. Garrido,et al.  Toward a 1.54 $\mu$m Electrically Driven Erbium-Doped Silicon Slot Waveguide and Optical Amplifier , 2013, Journal of Lightwave Technology.

[175]  D. Wiersma,et al.  Photon management in two-dimensional disordered media , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[176]  M. Kondo,et al.  Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .

[177]  Block copolymers: Nanostructured by immersion , 2014 .