The Gravity Field and Interior Structure of Enceladus
暂无分享,去创建一个
S. W. Asmar | P. Tortora | D. J. Stevenson | L. Iess | J. W. Armstrong | D. Hemingway | S. Asmar | J. Lunine | L. Iess | F. Nimmo | D. Stevenson | R. Jacobson | M. Parisi | M. Ducci | J. Armstrong | P. Tortora | F. Nimmo | J. I. Lunine | D. Hemingway | R. A. Jacobson | M. Parisi | M. Ducci
[1] P. Schenk,et al. Enceladus' extreme heat flux as revealed by its relaxed craters , 2012 .
[2] J. Waite,et al. Enceladus' Plume Composition , 2011 .
[3] W. McKinnon. The shape of Enceladus as explained by an irregular core: Implications for gravity, libration, and survival of its subsurface ocean , 2013 .
[4] R. Pappalardo,et al. Diapir-induced reorientation of Saturn's moon Enceladus , 2006, Nature.
[5] D. A. Patthoff,et al. A fracture history on Enceladus provides evidence for a global ocean , 2011 .
[6] F. Nimmo,et al. Obliquity tides do not significantly heat Enceladus , 2011 .
[7] G. Collins,et al. Enceladus' south polar sea , 2007 .
[8] Rosaly M. C. Lopes,et al. Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.
[9] S. Asmar,et al. Gravity field and interior of Rhea from Cassini data analysis , 2007 .
[10] P. Thomas,et al. Geophysical implications of the long‐wavelength topography of the Saturnian satellites , 2011 .
[11] J. Wisdom,et al. Tidal heating in Enceladus , 2007 .
[12] Ö. Karatekin,et al. Librational response of Enceladus , 2010 .
[13] L. Iess,et al. A non‐hydrostatic Rhea , 2008 .
[14] R. H. Brown,et al. An observed correlation between plume activity and tidal stresses on Enceladus , 2013, Nature.
[15] J. Wisdom. Spin-Orbit Secondary Resonance Dynamics of Enceladus , 2004 .
[16] D. Stevenson,et al. Episodic volcanism of tidally heated satellites with application to Io , 1986 .
[17] Carolyn C. Porco,et al. Association of the jets of Enceladus with the warmest regions on its south-polar fractures , 2007, Nature.
[18] J. Ashby. References and Notes , 1999 .
[19] W. Ip,et al. Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.
[20] S. Asmar,et al. The Tides of Titan , 2012, Science.
[21] J. H. Roberts,et al. Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .
[22] Bryan J. Travis,et al. Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .
[23] D. Tholen,et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .
[24] C. Murray,et al. Solar System Dynamics: Expansion of the Disturbing Function , 1999 .
[25] F. Nimmo,et al. Recent orbital evolution and the internal structures of Enceladus and Dione , 2009 .
[26] R. Srama,et al. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.
[27] G. Neukum,et al. Cassini Observes the Active South Pole of Enceladus , 2006, Science.
[28] Hauke Hussmann,et al. Enceladus: An estimate of heat flux and lithospheric thickness from flexurally supported topography , 2008 .
[29] R. J. Willemann,et al. Role of membrane stresses in the support of planetary topography , 1981 .
[30] H. Zebker,et al. A rigid and weathered ice shell on Titan , 2013, Nature.
[31] Luciano Iess,et al. Gravity Field, Shape, and Moment of Inertia of Titan , 2010, Science.
[32] D. W. Parcher,et al. The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .
[33] Gabriel Tobie,et al. Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus , 2008 .
[34] G. Schubert,et al. Rhea’s gravitational field and interior structure inferred from archival data files of the 2005 Cassini flyby , 2008 .
[35] J. Pearl,et al. High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .