Generation of large-scale magnetic fields due to fluctuating $\unicode[STIX]{x1D6FC}$ in shearing systems

We explore the growth of large-scale magnetic fields in a shear flow, due to helicity fluctuations with a finite correlation time, through a study of the Kraichnan–Moffatt model of zero-mean stochastic fluctuations of the $\unicode[STIX]{x1D6FC}$ parameter of dynamo theory. We derive a linear integro-differential equation for the evolution of the large-scale magnetic field, using the first-order smoothing approximation and the Galilean invariance of the $\unicode[STIX]{x1D6FC}$ -statistics. This enables construction of a model that is non-perturbative in the shearing rate $S$ and the $\unicode[STIX]{x1D6FC}$ -correlation time $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FC}}$ . After a brief review of the salient features of the exactly solvable white-noise limit, we consider the case of small but non-zero $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FC}}$ . When the large-scale magnetic field varies slowly, the evolution is governed by a partial differential equation. We present modal solutions and conditions for the exponential growth rate of the large-scale magnetic field, whose drivers are the Kraichnan diffusivity, Moffatt drift, shear and a non-zero correlation time. Of particular interest is dynamo action when the $\unicode[STIX]{x1D6FC}$ -fluctuations are weak; i.e. when the Kraichnan diffusivity is positive. We show that in the absence of Moffatt drift, shear does not give rise to growing solutions. But shear and Moffatt drift acting together can drive large-scale dynamo action with growth rate $\unicode[STIX]{x1D6FE}\propto |S|$ .

[1]  Eugene N. Parker,et al.  Cosmical Magnetic Fields: Their Origin and their Activity , 2019 .

[2]  Jin-lin Han,et al.  Observing Interstellar and Intergalactic Magnetic Fields , 2017 .

[3]  I. Rogachevskii,et al.  Enhancement of Small-scale Turbulent Dynamo by Large-scale Shear , 2016, 1610.07215.

[4]  Ashis Bhattacharjee,et al.  COHERENT NONHELICAL SHEAR DYNAMOS DRIVEN BY MAGNETIC FLUCTUATIONS AT LOW REYNOLDS NUMBERS , 2015, 1507.03154.

[5]  Ashis Bhattacharjee,et al.  Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows. , 2015, Physical review letters.

[6]  N. Singh Moffatt-drift-driven large-scale dynamo due to ${\it\alpha}$ fluctuations with non-zero correlation times , 2015, Journal of Fluid Mechanics.

[7]  S. Tobias,et al.  SHEAR-DRIVEN DYNAMO WAVES IN THE FULLY NONLINEAR REGIME , 2014 .

[8]  A. Brandenburg,et al.  Mean-field dynamo action from delayed transport , 2014, 1401.5026.

[9]  F. Krause,et al.  The Inverse Scattering Transformation and the Theory of Solitons. By W. ECKHAUS and A. VAN HARTEN. North-Holland, 1981. 222pp. $31.75. , 1982, Journal of Fluid Mechanics.

[10]  N. Singh,et al.  NUMERICAL STUDIES OF DYNAMO ACTION IN A TURBULENT SHEAR FLOW. I. , 2013, 1309.0200.

[11]  N. Singh,et al.  Large-scale dynamo action due to α fluctuations in a linear shear flow , 2013, 1306.2495.

[12]  Steven M. Tobias,et al.  Shear-driven dynamo waves at high magnetic Reynolds number , 2013, Nature.

[13]  M. Proctor,et al.  Fluctuating αΩ dynamos by iterated matrices , 2012 .

[14]  K. Subramanian,et al.  Mean-field dynamo action in renovating shearing flows. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. Proctor Bounds for growth rates for dynamos with shear , 2012, Journal of Fluid Mechanics.

[16]  J. McWilliams The elemental shear dynamo , 2011, Journal of Fluid Mechanics.

[17]  A. Brandenburg,et al.  Scaling and intermittency in incoherent α–shear dynamo , 2011, 1107.2419.

[18]  I. Kolokolov,et al.  Magnetic field correlations in random flow with strong steady shear , 2010, 1010.5904.

[19]  N. Singh,et al.  Transport coefficients for the shear dynamo problem at small Reynolds numbers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  N. Singh,et al.  The shear dynamo problem for small magnetic Reynolds numbers , 2009, Journal of Fluid Mechanics.

[21]  K. Subramanian,et al.  Nonperturbative quasilinear approach to the shear dynamo problem. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  K. Subramanian,et al.  Shear dynamo problem: Quasilinear kinematic theory. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  J. McWilliams,et al.  Large-scale magnetic field generation by randomly forced shearing waves. , 2008, Physical review letters.

[24]  K. Subramanian,et al.  Galactic dynamo action in presence of stochastic α and shear , 2008, 0809.0310.

[25]  N. Kleeorin,et al.  Numerical experiments on dynamo action in sheared and rotating turbulence , 2008, 0807.1122.

[26]  N. Kleeorin,et al.  Nonhelical mean‐field dynamos in a sheared turbulence , 2008, 0807.0320.

[27]  N. Kleeorin,et al.  Mean-field dynamo in a turbulence with shear and kinetic helicity fluctuations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  N. Kleeorin,et al.  Magnetic fluctuations and formation of large-scale inhomogeneous magnetic structures in a turbulent convection. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  M. Rheinhardt,et al.  Magnetic Diffusivity Tensor and Dynamo Effects in Rotating and Shearing Turbulence , 2007, 0710.4059.

[30]  N. Kleeorin,et al.  Generation of magnetic field by combined action of turbulence and shear. , 2007, Physical review letters.

[31]  M. Proctor Effects of fluctuation on αΩ dynamo models , 2007, 0708.3210.

[32]  K. Subramanian,et al.  Astrophysical magnetic fields and nonlinear dynamo theory , 2004, astro-ph/0405052.

[33]  E. Vishniac,et al.  An Incoherent α-Ω Dynamo in Accretion Disks , 1995, astro-ph/9510038.

[34]  T. Boyd Magnetic Field Generation in Electrically Conducting Fluids , 1984 .

[35]  H. K. Moffatt Transport effects associated with turbulence with particular attention to the influence of helicity , 1983 .

[36]  R. Kraichnan Diffusion of weak magnetic fields by isotropic turbulence , 1976, Journal of Fluid Mechanics.

[37]  M. Steenbeck,et al.  Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung , 1966 .

[38]  S. Tobias,et al.  What is a large-scale dynamo? , 2017 .

[39]  N. A. Silantev Magnetic dynamo due to turbulent helicity fluctuations , 2000 .

[40]  D. D. Sokolov The disk dynamo with fluctuating spirality , 1997 .

[41]  S. Shore Magnetic Fields in Astrophysics , 1992 .

[42]  A. Ruzmaikin Magnetic fields of galaxies , 1988 .

[43]  D. Sokoloff,et al.  Magnetic Fields in Astrophysics , 1958 .