Localization of Matrix Factorizations

Matrices with off-diagonal decay appear in a variety of fields in mathematics and in numerous applications, such as signal processing, statistics, communications engineering, condensed matter physics, and quantum chemistry. Numerical algorithms dealing with such matrices often take advantage (implicitly or explicitly) of the empirical observation that this off-diagonal-decay property seems to be preserved when computing various useful matrix factorizations, such as the Cholesky factorization or the QR factorization. There is a fairly extensive theory describing when the inverse of a matrix inherits the localization properties of the original matrix. Yet, except for the special case of band matrices, surprisingly very little theory exists that would establish similar results for matrix factorizations. We will derive a comprehensive framework to rigorously answer the question of when and under what conditions the matrix factors inherit the localization of the original matrix for such fundamental matrix factorizations as the LU, QR, Cholesky, and polar factorizations.

[1]  Harmonic analysis of causal operators and their spectral properties , 2005 .

[2]  J. Ward,et al.  factorization of operators on , 1986 .

[3]  Claude Le Bris,et al.  Computational chemistry from the perspective of numerical analysis , 2005, Acta Numerica.

[4]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[5]  G. Stolz,et al.  An Introduction to the Mathematics of Anderson Localization , 2011, 1104.2317.

[6]  Giuseppe Rodriguez,et al.  LDU factorization results for bi-infinite and semi-infinite scalar and block Toeplitz matrices , 1996 .

[7]  Birgit Jacob,et al.  On the Boundedness and Continuity of the Spectral Factorization Mapping , 2001, SIAM J. Control. Optim..

[8]  Square roots in Banach algebras , 1966 .

[9]  A. Baskakov,et al.  Wiener's theorem and the asymptotic estimates of the elements of inverse matrices , 1990 .

[10]  I. M. Gelfand,et al.  Commutative Normed Rings , 1968 .

[11]  Karlheinz Gröchenig,et al.  Convergence Analysis of the Finite Section Method and Banach Algebras of Matrices , 2010 .

[12]  A. Baskakov,et al.  Memory estimation of inverse operators , 2011, 1103.2748.

[13]  Holger Boche,et al.  On the boundedness behavior of the spectral factorization in the Wiener algebra for FIR data , 2007, 2007 15th European Signal Processing Conference.

[14]  A. E. Ingham On Tauberian Theorems , 1965 .

[15]  M. Benzi,et al.  DECAY BOUNDS AND ( ) ALGORITHMS FOR APPROXIMATING FUNCTIONS OF SPARSE MATRICES , 2007 .

[16]  Philip Schniter,et al.  Equalization of Time-Varying Channels , 2011 .

[17]  A. Baskakov,et al.  Estimates for the entries of inverse matrices and the spectral analysis of linear operators , 1997 .

[18]  Reinhold Schneider,et al.  Daubechies wavelets as a basis set for density functional pseudopotential calculations. , 2008, The Journal of chemical physics.

[19]  Thomas Strohmer,et al.  Pseudodifferential operators and Banach algebras in mobile communications , 2006 .

[20]  Qiyu Sun,et al.  WIENER’S LEMMA FOR INFINITE MATRICES , 2007 .

[21]  P. Hall,et al.  Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise , 2009, 0902.3837.

[22]  Karlheinz Gröchenig,et al.  Noncommutative Approximation: Inverse-Closed Subalgebras and Off-Diagonal Decay of Matrices , 2009, 0904.0386.

[23]  Fourier series of operators and an extension of the F. and M. Riesz theorem , 1973 .

[24]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[25]  W. Arveson Interpolation problems in nest algebras , 1975 .

[26]  S. Goedecker DECAY PROPERTIES OF THE FINITE-TEMPERATURE DENSITY MATRIX IN METALS , 1998 .

[27]  I. Blatov On algebras and applications of operators with pseudosparse matrices , 1996 .

[28]  Israel Gohberg,et al.  The band method for positive and strictly contractive extension problems: An alternative version and new applications , 1989 .

[29]  Symmetry of Matrix Algebras and Symbolic Calculus for Infinite Matrices , 2022 .

[30]  S. Mallat A wavelet tour of signal processing , 1998 .

[31]  A. I. Perov Estimates for the elements of inverse matrices under the conditions of regularity criteria , 1999 .

[32]  Marko Lindner,et al.  Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method , 2006 .

[33]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[34]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[35]  Karlheinz Gröchenig,et al.  Norm‐controlled inversion in smooth Banach algebras, II , 2014 .

[36]  S. Mallat VI – Wavelet zoom , 1999 .

[37]  A. Baskakov Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators , 2006 .

[38]  U. G. Kurbatov Functional Differential Operators and Equations , 1999 .

[39]  Karlheinz Gröchenig,et al.  Wiener’s Lemma: Theme and Variations. An Introduction to Spectral Invariance and Its Applications , 2010 .

[40]  Michele Benzi,et al.  Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..

[41]  Charles K. Chui,et al.  Cholesky factorization of positive definite bi-infinite matrices , 1982 .

[42]  K. Gröchenig,et al.  Wiener's lemma for twisted convolution and Gabor frames , 2003 .

[43]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[44]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[45]  Michele Benzi,et al.  Orderings for Factorized Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[46]  Karlheinz Gröchenig,et al.  Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices , 2006 .

[47]  J. Sjöstrand,et al.  Wiener type algebras of pseudodifferential operators , 1995 .

[48]  On harmonic analysis of causal operators , 2006 .

[49]  Andreas F. Molisch,et al.  Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..

[50]  Karlheinz Gröchenig,et al.  Norm‐controlled inversion in smooth Banach algebras, I , 2012, J. Lond. Math. Soc..

[51]  Arieh Iserles How Large is the Exponential of a Banded Matrix , 1999 .

[52]  G. Golub,et al.  BOUNDS FOR THE ENTRIES OF MATRIXFUNCTIONS WITH APPLICATIONS TOPRECONDITIONING , 1999 .

[53]  R. Coifman,et al.  Diffusion Wavelets , 2004 .