Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls.

An integrated platform for the capture, transport, and detection of individual superparamagnetic microbeads is described for lab-on-a-chip biomedical applications. Magnetic domain walls in magnetic tracks have previously been shown to be capable of capturing and transporting individual beads through a fluid at high speeds. Here it is shown that the strong magnetostatic interaction between a bead and a domain wall leads to a distinct magneto-mechanical resonance that reflects the susceptibility and hydrodynamic size of the trapped bead. Numerical and analytical modeling is used to quantitatively explain this resonance, and the magneto-mechanical resonant response under sinusoidal drive is experimentally characterized both optically and electrically. The observed bead resonance presents a new mechanism for microbead sensing and metrology. The dual functionality of domain walls as both bead carriers and sensors is a promising platform for the development of lab-on-a-bead technologies.

[1]  Jacques Miltat,et al.  Head-to-head domain walls in soft nano-strips: a refined phase diagram , 2005 .

[2]  Shan X. Wang,et al.  Advances in Giant Magnetoresistance Biosensors With Magnetic Nanoparticle Tags: Review and Outlook , 2008, IEEE Transactions on Magnetics.

[3]  Paolo Vavassori,et al.  On‐Chip Manipulation of Protein‐Coated Magnetic Beads via Domain‐Wall Conduits , 2010, Advanced materials.

[4]  R. Sooryakumar,et al.  Magnetic wire traps and programmable manipulation of biological cells. , 2009, Physical review letters.

[5]  Lutz Trahms,et al.  Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles , 1999 .

[6]  Gil U. Lee,et al.  A biosensor based on magnetoresistance technology. , 1998, Biosensors & bioelectronics.

[7]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[8]  Ondrej Hovorka,et al.  Arranging matter by magnetic nanoparticle assemblers , 2005 .

[9]  Jiangwei Cao,et al.  On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions , 2011 .

[10]  Fernando Castaño,et al.  Quantitative digital detection of magnetic beads using pseudo-spin-valve rings for multiplexed bioassays , 2007 .

[11]  J. Connolly,et al.  Proposed biosensors based on time-dependent properties of magnetic fluids , 2001 .

[12]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[13]  M Donolato,et al.  Magnetic domain wall conduits for single cell applications. , 2011, Lab on a chip.

[14]  Liesbet Lagae,et al.  Cell manipulation with magnetic particles toward microfluidic cytometry , 2009 .

[15]  Geoffrey S. D. Beach,et al.  Dynamics of superparamagnetic microbead transport along magnetic nanotracks by magnetic domain walls , 2012 .

[16]  G. Beach,et al.  Magneto-mechanical resonance of a single superparamagnetic microbead trapped by a magnetic domain wall , 2012 .

[17]  Drew A. Hall,et al.  Quantification of Protein Interactions and Solution Transport Using High-Density GMR Sensor Arrays , 2011, Nature nanotechnology.

[18]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[19]  Jon Dobson,et al.  Remote control of cellular behaviour with magnetic nanoparticles. , 2008, Nature nanotechnology.

[20]  R. Colton,et al.  The BARC biosensor applied to the detection of biological warfare agents. , 2000, Biosensors & bioelectronics.

[21]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[22]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[23]  Maria Strømme,et al.  Sensitive molecular diagnostics using volume-amplified magnetic nanobeads. , 2008, Nano letters.

[24]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[25]  Martin A. M. Gijs,et al.  Magnetic bead handling on-chip: new opportunities for analytical applications , 2004 .

[26]  Mi-Young Im,et al.  Switchable Cell Trapping Using Superparamagnetic Beads , 2010, IEEE Magnetics Letters.

[27]  Hugo Ferreira,et al.  On-chip manipulation and magnetization assessment of magnetic bead ensembles by integrated spin-valve sensors , 2002 .

[28]  Andrea Prieto Astalan,et al.  Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles. , 2004, Biosensors & bioelectronics.

[29]  Peter Svedlindh,et al.  Programmable Motion and Separation of Single Magnetic Particles on Patterned Magnetic Surfaces , 2005 .

[30]  M. Prins,et al.  Magnetic bead manipulation in a sub-microliter fluid volume applicable for biosensing , 2007 .

[31]  Liesbet Lagae,et al.  A simple double-bead sandwich assay for protein detection in serum using UV-vis spectroscopy. , 2011, Talanta.

[32]  L. Sousa,et al.  Femtomolar limit of detection with a magnetoresistive biochip. , 2009, Biosensors & bioelectronics.

[33]  F. J. Castano,et al.  Magnetism in multilayer thin film rings , 2008 .

[34]  Maria Strømme,et al.  Bead magnetorelaxometry with an on-chip magnetoresistive sensor. , 2011, Lab on a chip.

[35]  Cheryl Moody Bartel,et al.  On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. , 2010, Analytical chemistry.

[36]  R. Bertacco,et al.  Domain wall displacement in Py square ring for single nanometric magnetic bead detection , 2008, 0809.4649.

[37]  Z. F. Jian,et al.  Wash-free immunomagnetic detection for serum through magnetic susceptibility reduction , 2007 .

[38]  Peter Svedlindh,et al.  A magnetic microchip for controlled transport of attomole levels of proteins. , 2010, Lab on a chip.

[39]  Maria Strømme,et al.  Multiplex detection of DNA sequences using the volume-amplified magnetic nanobead detection assay. , 2009, Analytical chemistry.

[40]  Aaron Chen,et al.  Simultaneous magnetic manipulation and fluorescent tracking of multiple individual hybrid nanostructures. , 2010, Nano letters.