Automatic Design of Decision-Tree Induction Algorithms

DEcision-tree induction is one of the most employed methods to extract knowledge from data. There are several distinct strategies for inducing decision trees from data, each one presenting advantages and disadvantages according to its corresponding inductive bias. These strategies have been continuously improved by researchers over the last 40 years. This thesis, following recent breakthroughs in the automatic design of machine learning algorithms, proposes to automatically generate decision-tree induction algorithms. Our proposed approach, namely HEAD-DT, is based on the evolutionary algorithms paradigm, which improves solutions based on metaphors of biological processes. HEAD-DT works over several manually-designed decision-tree components and combines the most suitable components for the task at hand. It can operate according to two different frameworks: i) evolving algorithms tailored to one single data set (specific framework); and ii) evolving algorithms from multiple data sets (general framework). The specific framework aims at generating one decision-tree algorithm per data set, so the resulting algorithm does not need to generalise beyond its target data set. The general framework has a more ambitious goal, which is to generate a single decision-tree algorithm capable of being effectively applied to several data sets. The specific framework is tested over 20 UCI data sets, and results show that HEAD-DT’s specific algorithms outperform algorithms like CART and C4.5 with statistical significance. The general framework, in turn, is executed under two different scenarios: i) designing a domain-specific algorithm; and ii) designing a robust domain-free algorithm. The first scenario is tested over 35 microarray gene expression data sets, and results show that HEAD-DT’s algorithms consistently outperform C4.5 and CART in different experimental configurations. The second scenario is tested over 67 UCI data sets, and HEAD-DT’s algorithms were shown to be competitive with C4.5 and CART. Nevertheless, we show that HEAD-DT is prone to a special case of overfitting when it is executed under the second scenario of the general framework, and we point to possible alternatives for solving this problem. Finally, we perform an extensive experiment for evaluating the best single-objective fitness function for HEAD-DT, combining 5 classification performance measures with three aggregation schemes. We evaluate the 15 fitness functions in 67 UCI data sets, and the best of them are employed to generate algorithms tailored to balanced and imbalanced data. Results show that the automatically-designed algorithms outperform CART and C4.5 with statistical significance, indicating that HEAD-DT is also capable of generating custom algorithms for data with a particular kind of statistical profile.

[1]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[2]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[3]  Philip J. Stone,et al.  Experiments in induction , 1966 .

[4]  I. Bratko,et al.  Learning decision rules in noisy domains , 1987 .

[5]  Carla E. Brodley,et al.  Linear Machine Decision Trees , 1991 .

[6]  S. Raghavan,et al.  Genetically Engineered Decision Trees: Population Diversity Produces Smarter Trees , 2003, Oper. Res..

[7]  Hong-Yeop Song,et al.  A New Criterion in Selection and Discretization of Attributes for the Generation of Decision Trees , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Andy J. Keane The design of a satellite boom with enhanced vibration performance using genetic algorithm techniques , 1996 .

[9]  Jan L. Talmon A multiclass nonparametric partitioning algorithm , 1986, Pattern Recognit. Lett..

[10]  Dimitrios Kalles,et al.  GA Tree: genetically evolved decision trees , 2000, Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000.

[11]  John R. Woodward,et al.  GA or GP? That is not the question , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[12]  Xavier Llorà,et al.  Evolution of Decision Trees , 2001 .

[13]  Steven Salzberg,et al.  Lookahead and Pathology in Decision Tree Induction , 1995, IJCAI.

[14]  Ma Chong,et al.  Study on Constructing Generalized Decision Tree by Using DNA Coding Genetic Algorithm , 2009, 2009 International Conference on Web Information Systems and Mining.

[15]  Luís A. Alexandre,et al.  Decision Trees Using the Minimum Entropy-of-Error Principle , 2009, CAIP.

[16]  GPShin'ichi Oka,et al.  Design of Decision Trees through Integration of C4.5 and GP , 2007 .

[17]  Peter Clark,et al.  The CN2 induction algorithm , 2004, Machine Learning.

[18]  P. Utgoff,et al.  Multivariate Versus Univariate Decision Trees , 1992 .

[19]  Simon Kasif,et al.  A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..

[20]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[21]  M F Collen,et al.  Towards automated medical decisions. , 1972, Computers and biomedical research, an international journal.

[22]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Software effort prediction: a hyper-heuristic decision-tree based approach , 2013, SAC '13.

[23]  Marek Kretowski,et al.  Evolutionary Induction of Decision Trees for Misclassification Cost Minimization , 2007, ICANNGA.

[24]  Ayahiko Niimi,et al.  Genetic programming combined with association rule algorithm for decision tree construction , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[25]  Xin Yao,et al.  Cost-sensitive classification with genetic programming , 2005, 2005 IEEE Congress on Evolutionary Computation.

[26]  Chandrika Kamath,et al.  Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies , 2000, SPIE Optics + Photonics.

[27]  G. H. Landeweerd,et al.  Binary tree versus single level tree classification of white blood cells , 1983, Pattern Recognit..

[28]  Andrew K. C. Wong,et al.  Class-Dependent Discretization for Inductive Learning from Continuous and Mixed-Mode Data , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Taghi M. Khoshgoftaar,et al.  A Multi-Objective Software Quality Classification Model Using Genetic Programming , 2007, IEEE Transactions on Reliability.

[30]  Graham Kendall,et al.  A Classification of Hyper-heuristics Approaches – Revisited , 2017 .

[31]  P. Utgoff,et al.  A Kolmogorov-Smirnoff Metric for Decision Tree Induction , 1996 .

[32]  Philip H. Swain,et al.  Purdue e-Pubs , 2022 .

[33]  George Nagy,et al.  Decision tree design using a probabilistic model , 1984, IEEE Trans. Inf. Theory.

[34]  Xavier Llorà,et al.  Mixed Decision Trees: Minimizing Knowledge Representation Bias in LCS , 2004, GECCO.

[35]  M. C. Jones,et al.  Splitting criteria for regression trees , 1996 .

[36]  Ivan Bratko,et al.  Experiments in automatic learning of medical diagnostic rules , 1984 .

[37]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[38]  Sreerama K. Murthy,et al.  Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey , 1998, Data Mining and Knowledge Discovery.

[39]  Marek Kretowski,et al.  Induction of Multivariate Decision Trees by Using Dipolar Criteria , 2000, PKDD.

[40]  Colin J Burgess,et al.  Can genetic programming improve software effort estimation? A comparative evaluation , 2001, Inf. Softw. Technol..

[41]  Allan P. White,et al.  Technical Note: Bias in Information-Based Measures in Decision Tree Induction , 1994, Machine Learning.

[42]  Lior Rokach,et al.  Top-down induction of decision trees classifiers - a survey , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[43]  Oliver Kramer Self-Adaptive Crossover , 2008 .

[44]  Jerome H. Friedman,et al.  A Recursive Partitioning Decision Rule for Nonparametric Classification , 1977, IEEE Transactions on Computers.

[45]  I. K. Sethi,et al.  Hierarchical Classifier Design Using Mutual Information , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Tin Kam Ho,et al.  Complexity Measures of Supervised Classification Problems , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[48]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[49]  Xinhua Zhuang,et al.  Enhanced binary tree genetic algorithm for automatic land cover classification , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[50]  Z. Bandar,et al.  Genetic algorithm based multiple decision tree induction , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[51]  Jonathan R. M. Hosking,et al.  Partitioning Nominal Attributes in Decision Trees , 1999, Data Mining and Knowledge Discovery.

[52]  N. Graham,et al.  Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation , 2002 .

[53]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Decision-Tree Induction , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[54]  Scott F. Smith RNA Search Acceleration with Genetic Algorithm Generated Decision Trees , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[55]  Zbigniew Michalewicz,et al.  Parameter Control in Practice , 2007, Parameter Setting in Evolutionary Algorithms.

[56]  Xiaobo Li,et al.  Tree classifier design with a permutation statistic , 1986, Pattern Recognit..

[57]  Leon Bobrowski Piecewise-linear classifiers, formal neurons and separability of the learning sets , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[58]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data , 2012, BMC Bioinformatics.

[59]  Kumar Chellapilla,et al.  Evolving computer programs without subtree crossover , 1997, IEEE Trans. Evol. Comput..

[60]  Vili Podgorelec,et al.  Evolving groups of basic decision trees , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[61]  Eric V. Siegel Competitively evolving decision trees against fixed training cases for natural language processing , 1994 .

[62]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[63]  Alex Alves Freitas,et al.  Under Consideration for Publication in Knowledge and Information Systems Evolving Rule Induction Algorithms with Multi-objective Grammar-based Genetic Programming , 2022 .

[64]  Gisele L. Pappa Automatically evolving rule induction algorithms with grammar-based genetic programming , 2007 .

[65]  Peter D. Turney Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm , 1994, J. Artif. Intell. Res..

[66]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[67]  William B. Langdon,et al.  Application of Genetic Programming to Induction of Linear Classification Trees , 2000, EuroGP.

[68]  Javier G. Marín-Blázquez,et al.  A Hyper-Heuristic Framework with XCS: Learning to Create Novel Problem-Solving Algorithms Constructed from Simpler Algorithmic Ingredients , 2005, IWLCS.

[69]  Taghi M. Khoshgoftaar,et al.  Genetic programming-based decision trees for software quality classification , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[70]  Donato Malerba,et al.  Simplifying Decision Trees by Pruning and Grafting: New Results (Extended Abstract) , 1995, ECML.

[71]  Guangzhe Fan,et al.  Classification tree analysis using TARGET , 2008, Comput. Stat. Data Anal..

[72]  Ivan Bratko,et al.  On Estimating Probabilities in Tree Pruning , 1991, EWSL.

[73]  Ching Y. Suen,et al.  Binary Decision Tree Using K-means and Genetic Algorithm for Recognizing Defect Patterns of Cold Mill Strip , 2004, IEA/AIE.

[74]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[75]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  A framework for bottom-up induction of oblique decision trees , 2014, Neurocomputing.

[76]  Steven L. Dixon,et al.  Induction of Decision Trees via Evolutionary Programming , 2004, J. Chem. Inf. Model..

[77]  Andries Petrus Engelbrecht,et al.  Evolving model trees for mining data sets with continuous-valued classes , 2008, Expert Syst. Appl..

[78]  Ricardo Vilalta,et al.  Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.

[79]  Giandomenico Spezzano,et al.  Improving induction decision trees with parallel genetic programming , 2002, Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing.

[80]  S. Raghavan,et al.  Diversification for better classification trees , 2006, Comput. Oper. Res..

[81]  Graham Kendall,et al.  Ramped Half-n-Half Initialisation Bias in GP , 2003, GECCO.

[82]  J. Ross Quinlan,et al.  Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..

[83]  Rodrigo C. Barros,et al.  Evolutionary model trees for handling continuous classes in machine learning , 2011, Inf. Sci..

[84]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[85]  Bruce A. Draper,et al.  Goal-Directed Classification Using Linear Machine Decision Trees , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Gerrit K. Janssens,et al.  Data mining with genetic algorithms on binary trees , 2003, Eur. J. Oper. Res..

[87]  J. Kent Martin,et al.  An Exact Probability Metric for Decision Tree Splitting and Stopping , 1997, Machine Learning.

[88]  James T. C. Teng,et al.  Multivariate decision trees using linear discriminants and tabu search , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[89]  Kweku-Muata Osei-Bryson,et al.  Post-pruning in regression tree induction: An integrated approach , 2008, Expert Syst. Appl..

[90]  Michael O'Neill,et al.  Semantic Similarity Based Crossover in GP: The Case for Real-Valued Function Regression , 2009, Artificial Evolution.

[91]  Tzung-Pei Hong,et al.  AN IMPROVED KNOWLEDGE-ACQUISITION STRATEGY BASED ON GENETIC PROGRAMMING , 2008, Cybern. Syst..

[92]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[93]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[94]  G. De’ath MULTIVARIATE REGRESSION TREES: A NEW TECHNIQUE FOR MODELING SPECIES–ENVIRONMENT RELATIONSHIPS , 2002 .

[95]  R. Reynolds,et al.  The use of cultural algorithms with evolutionary programming to guide decision tree induction in large databases , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[96]  Chandrika Kamath,et al.  Inducing oblique decision trees with evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[97]  Dimitrios Kalles,et al.  Breeding Decision Trees Using Evolutionary Techniques , 2001, ICML.

[98]  Blaise Hanczar,et al.  Small-sample precision of ROC-related estimates , 2010, Bioinform..

[99]  Vili Podgorelec,et al.  Finding the right decision tree's induction strategy for a hard real world problem , 2001, Int. J. Medical Informatics.

[100]  Edward J. Delp,et al.  An iterative growing and pruning algorithm for classification tree design , 1989, Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics.

[101]  Donato Malerba,et al.  A Comparative Analysis of Methods for Pruning Decision Trees , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  Marc Parizeau,et al.  Genericity in Evolutionary Computation Software Tools: Principles and Case-study , 2006, Int. J. Artif. Intell. Tools.

[103]  María Cristina Riff,et al.  DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic , 2010, J. Heuristics.

[104]  Alex Alves Freitas,et al.  LEGAL-tree: a lexicographic multi-objective genetic algorithm for decision tree induction , 2009, SAC '09.

[105]  Lars Niklasson,et al.  Evolving decision trees using oracle guides , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[106]  W. Loh,et al.  SPLIT SELECTION METHODS FOR CLASSIFICATION TREES , 1997 .

[107]  Usama M. Fayyad,et al.  The Attribute Selection Problem in Decision Tree Generation , 1992, AAAI.

[108]  Giandomenico Spezzano,et al.  A Cellular Genetic Programming Approach to Classification , 1999, GECCO.

[109]  Vili Podgorelec,et al.  Self-adapting evolutionary decision support model , 1999, ISIE '99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No.99TH8465).

[110]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[111]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[112]  Huan Liu,et al.  Feature Transformation and Multivariate Decision Tree Induction , 1998, Discovery Science.

[113]  Vili Podgorelec,et al.  Improving mining of medical data by outliers prediction , 2005, 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05).

[114]  Ender Özcan,et al.  A comprehensive analysis of hyper-heuristics , 2008, Intell. Data Anal..

[115]  Wray L. Buntine,et al.  A theory of learning classification rules , 1990 .

[116]  Simon Kasif,et al.  OC1: A Randomized Induction of Oblique Decision Trees , 1993, AAAI.

[117]  K. Pattipati,et al.  Application of heuristic search and information theory to sequential fault diagnosis , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[118]  Vipin Kumar,et al.  Introduction to Data Mining, (First Edition) , 2005 .

[119]  Ravi Kothari,et al.  Look-ahead based fuzzy decision tree induction , 2001, IEEE Trans. Fuzzy Syst..

[120]  Zoran Obradovic,et al.  Component-based decision trees for classification , 2011, Intell. Data Anal..

[121]  Nils J. Nilsson,et al.  The Mathematical Foundations of Learning Machines , 1990 .

[122]  Paul E. Utgoff,et al.  Decision Tree Induction Based on Efficient Tree Restructuring , 1997, Machine Learning.

[123]  U. Fayyad On the induction of decision trees for multiple concept learning , 1991 .

[124]  Ian H. Witten,et al.  Induction of model trees for predicting continuous classes , 1996 .

[125]  Alex Alves Freitas,et al.  Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms , 2013, Genetic Programming and Evolvable Machines.

[126]  David W. Aha,et al.  Simplifying decision trees: A survey , 1997, The Knowledge Engineering Review.

[127]  Luís Torgo,et al.  Functional Models for Regression Tree Leaves , 1997, ICML.

[128]  Nikolay I. Nikolaev,et al.  Inductive Genetic Programming with Decision Trees , 1998, Intell. Data Anal..

[129]  O. Mangasarian,et al.  Pattern Recognition Via Linear Programming: Theory and Application to Medical Diagnosis , 1989 .

[130]  Alexander Schliep,et al.  Clustering cancer gene expression data: a comparative study , 2008, BMC Bioinformatics.

[131]  Guangzhe Fan,et al.  Regression Tree Analysis Using TARGET , 2005 .

[132]  A. Agresti Wiley Series in Probability and Statistics , 2002 .

[133]  John Mingers,et al.  An Empirical Comparison of Pruning Methods for Decision Tree Induction , 1989, Machine Learning.

[134]  Giandomenico Spezzano,et al.  Parallel genetic programming for decision tree induction , 2001, Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001.

[135]  Steven W. Norton,et al.  Generating Better Decision Trees , 1989, IJCAI.

[136]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[137]  Giandomenico Spezzano,et al.  Genetic Programming and Simulated Annealing: A Hybrid Method to Evolve Decision Trees , 2000, EuroGP.

[138]  Rafael Ramirez,et al.  Modelling expressive performance using consistent evolutionary regression trees , 2006 .

[139]  Ravi Kothari,et al.  A new node splitting measure for decision tree construction , 2010, Pattern Recognit..

[140]  David A. Landgrebe,et al.  Hierarchical classifier design in high-dimensional numerous class cases , 1991, IEEE Trans. Geosci. Remote. Sens..

[141]  Michael Schlosser,et al.  Non-Linear Decision Trees - NDT , 1996, ICML.

[142]  Walter A. Kosters,et al.  Genetic programming for data classi cation: Re ning the search space , 2003 .

[143]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[144]  Tharam S. Dillon,et al.  A Statistical-Heuristic Feature Selection Criterion for Decision Tree Induction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[145]  Paul E. Utgoff,et al.  Perceptron Trees : A Case Study in ybrid Concept epresentations , 1999 .

[146]  John R. Koza,et al.  Concept Formation and Decision Tree Induction Using the Genetic Programming Paradigm , 1990, PPSN.

[147]  Marek Kretowski,et al.  Evolutionary Induction of Cost-Sensitive Decision Trees , 2006, ISMIS.

[148]  Sanja Petrovic,et al.  A new dispatching rule based genetic algorithm for the multi-objective job shop problem , 2010, J. Heuristics.

[149]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[150]  Vili Podgorelec,et al.  Evolutionary induced decision trees for dangerous software modules prediction , 2002, Inf. Process. Lett..

[151]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  A bottom-up oblique decision tree induction algorithm , 2011, 2011 11th International Conference on Intelligent Systems Design and Applications.

[152]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[153]  Dr. Alex A. Freitas Data Mining and Knowledge Discovery with Evolutionary Algorithms , 2002, Natural Computing Series.

[154]  W. Loh,et al.  REGRESSION TREES WITH UNBIASED VARIABLE SELECTION AND INTERACTION DETECTION , 2002 .

[155]  Athanassios Papagelis,et al.  Lossless fitness inheritance in genetic algorithms for decision trees , 2006, Soft Comput..

[156]  Conor Ryan,et al.  Using context-aware crossover to improve the performance of GP , 2006, GECCO '06.

[157]  B. Chandra,et al.  Moving towards efficient decision tree construction , 2009, Inf. Sci..

[158]  José Hernández-Orallo,et al.  An experimental comparison of performance measures for classification , 2009, Pattern Recognit. Lett..

[159]  Edmund K. Burke,et al.  Analyzing the landscape of a graph based hyper-heuristic for timetabling problems , 2009, GECCO.

[160]  J. R. Quinlan DECISION TREES AS PROBABILISTIC CLASSIFIERS , 1987 .

[161]  Qiangfu Zhao,et al.  A study on evolutionary design of binary decision trees , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[162]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[163]  Tzung-Pei Hong,et al.  Applying genetic programming technique in classification trees , 2007, Soft Comput..

[164]  Ethem Alpaydin,et al.  Omnivariate decision trees , 2001, IEEE Trans. Neural Networks.

[165]  Xinhua Zhuang,et al.  Binary linear decision tree with genetic algorithm , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[166]  Monica Chis Evolutionary Decision Trees and Software Metrics for Module Defects Identification , 2008 .

[167]  Shaul Markovitch,et al.  Anytime Learning of Decision Trees , 2007, J. Mach. Learn. Res..

[168]  Pramod K. Varshney,et al.  Application of Information Theory to Sequential Fault Diagnosis , 1982, IEEE Transactions on Computers.

[169]  Philip A. Chou,et al.  Optimal Partitioning for Classification and Regression Trees , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[170]  Yu-Shan Shih,et al.  Splitting variable selection for multivariate regression trees , 2007 .

[171]  J. Morgan,et al.  Thaid a Sequential Analysis Program for the Analysis of Nominal Scale Dependent Variables , 1973 .

[172]  Qiangfu Zhao,et al.  Designing smaller decision trees using multiple objective optimization based GPs , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[173]  P. Kokol,et al.  Evolutionary construction of medical decision trees , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[174]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[175]  P. V. G. Bradbeer,et al.  The Construction and Evaluation of Decision Trees: a Comparison of Evolutionary and Concept Learning Methods , 1997, Evolutionary Computing, AISB Workshop.

[176]  Liangxiao Jiang,et al.  An Improved Attribute Selection Measure for Decision Tree Induction , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[177]  G. E. Naumov NP-completeness of problems of construction of optimal decision trees , 1991 .

[178]  K. P. Unnikrishnan,et al.  Alopex: A Correlation-Based Learning Algorithm for Feedforward and Recurrent Neural Networks , 1994, Neural Computation.

[179]  Alex Alves Freitas,et al.  Automatically Evolving Rule Induction Algorithms , 2006, ECML.

[180]  John R. Koza,et al.  A genetic approach to the truck backer upper problem and the inter-twined spiral problem , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[181]  P. Speckman,et al.  Multivariate Regression Trees for Analysis of Abundance Data , 2004, Biometrics.

[182]  Alex Alves Freitas,et al.  Evolutionary model tree induction , 2010, SAC '10.

[183]  G. Kalkanis,et al.  The application of confidence interval error analysis to the design of decision tree classifiers , 1993, Pattern Recognit. Lett..

[184]  Carla E. Brodley,et al.  An Incremental Method for Finding Multivariate Splits for Decision Trees , 1990, ML.

[185]  P. Shanti Sastry,et al.  New algorithms for learning and pruning oblique decision trees , 1999, IEEE Trans. Syst. Man Cybern. Part C.

[186]  Ronald L. Rivest,et al.  Inferring Decision Trees Using the Minimum Description Length Principle , 1989, Inf. Comput..

[187]  David J. Hand,et al.  Measuring classifier performance: a coherent alternative to the area under the ROC curve , 2009, Machine Learning.

[188]  Marek Kretowski,et al.  An Evolutionary Algorithm for Oblique Decision Tree Induction , 2004, ICAISC.

[189]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[190]  Pramod K. Varshney,et al.  Application of information theory to the construction of efficient decision trees , 1982, IEEE Trans. Inf. Theory.

[191]  Luís Torgo Error Estimators for Pruning Regression Trees , 1998, ECML.

[192]  Alex Alves Freitas,et al.  Towards the automatic design of decision tree induction algorithms , 2011, GECCO.

[193]  Jill P. Mesirov,et al.  Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data , 2003, Machine Learning.

[194]  Alex Alves Freitas,et al.  A critical review of multi-objective optimization in data mining: a position paper , 2004, SKDD.

[195]  Marek Kr Global Induction of Oblique Decision Trees: An Evolutionary Approach , 2005 .

[196]  John Mingers,et al.  Expert Systems—Rule Induction with Statistical Data , 1987 .

[197]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[198]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.

[199]  Andreas Buja,et al.  Data mining criteria for tree-based regression and classification , 2001, KDD '01.

[200]  Mohammad Reza Kangavari,et al.  Using genetic programming for the induction of oblique decision trees , 2007, ICMLA 2007.

[201]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[202]  John Mingers,et al.  An empirical comparison of selection measures for decision-tree induction , 2004, Machine Learning.

[203]  Paul W. Baim A Method for Attribute Selection in Inductive Learning Systems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[204]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[205]  Vili Podgorelec,et al.  Towards More Optimal Medical Diagnosing with Evolutionary Algorithms , 2001, Journal of Medical Systems.

[206]  Christopher Gathercole,et al.  An investigation of supervised learning in genetic programming , 1998 .

[207]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[208]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[209]  Huimin Zhao,et al.  A multi-objective genetic programming approach to developing Pareto optimal decision trees , 2007, Decis. Support Syst..

[210]  Rafael Ramírez,et al.  Modelling Expressive Performance: A Regression Tree Approach Based on Strongly Typed Genetic Programming , 2006, EvoWorkshops.

[211]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.

[212]  Matt J. Aitkenhead,et al.  A co-evolving decision tree classification method , 2008, Expert Syst. Appl..

[213]  Tin Kam Ho,et al.  Measures of Geometrical Complexity in Classification Problems , 2006 .

[214]  Sanja Petrovic,et al.  Dispatching rules for production scheduling: A hyper-heuristic landscape analysis , 2009, 2009 IEEE Congress on Evolutionary Computation.

[215]  S. Raghavan,et al.  A Genetic Algorithm-Based Approach for Building Accurate Decision Trees , 2003, INFORMS J. Comput..

[216]  R. Potolea,et al.  A Hybrid Algorithm for Medical Diagnosis , 2007, EUROCON 2007 - The International Conference on "Computer as a Tool".

[217]  Sean Luke,et al.  Two fast tree-creation algorithms for genetic programming , 2000, IEEE Trans. Evol. Comput..

[218]  Xinhua Zhuang,et al.  Piecewise linear classifiers using binary tree structure and genetic algorithm , 1996, Pattern Recognit..

[219]  J. R. Quinlan Learning With Continuous Classes , 1992 .

[220]  Peter Ross,et al.  Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems , 2010, Ann. Oper. Res..

[221]  A. Engelbrecht,et al.  Searching the forest: using decision trees as building blocks for evolutionary search in classification databases , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[222]  James N. Morgan,et al.  Searching for structure (alias-AID-III) : an approach to analysis of substantial bodies of micro-data and documentation for a computer program (successor to the Automatic Interaction Detector Program) , 1971 .

[223]  Wray L. Buntine,et al.  Learning classification trees , 1992 .

[224]  Rodrigo C. Barros,et al.  A beam search based decision tree induction algorithm , 2012 .

[225]  Nikolay I. Nikolaev,et al.  Fitness Landscapes and Inductive Genetic Programming , 1997, ICANNGA.

[226]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[227]  David J. Montana,et al.  Strongly Typed Genetic Programming , 1995, Evolutionary Computation.

[228]  Peter A. Whigham,et al.  Grammar-based Genetic Programming: a survey , 2010, Genetic Programming and Evolvable Machines.

[229]  Tao Jiang,et al.  Lower Bounds on Learning Decision Lists and Trees , 1995, Inf. Comput..

[230]  J. Ross Quinlan,et al.  Unknown Attribute Values in Induction , 1989, ML.

[231]  Alex Alves Freitas A Review of evolutionary Algorithms for Data Mining , 2008, Soft Computing for Knowledge Discovery and Data Mining.

[232]  R. Apweiler,et al.  On the Importance of Comprehensible Classification Models for Protein Function Prediction , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[233]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[234]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[235]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[236]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[237]  Carlos Castro,et al.  Stable solving of CVRPs using hyperheuristics , 2009, GECCO '09.

[238]  Hans Zantema,et al.  Finding Small Equivalent Decision Trees is Hard , 2000, Int. J. Found. Comput. Sci..

[239]  Ching Y. Suen,et al.  Binary Decision Tree Using Genetic Algorithm for Recognizing Defect Patterns of Cold Mill Strip , 2004, Canadian Conference on AI.

[240]  David L. Dowe,et al.  MML Inference of Oblique Decision Trees , 2004, Australian Conference on Artificial Intelligence.

[241]  Carla E. Brodley,et al.  Multivariate decision trees , 2004, Machine Learning.

[242]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[243]  Roberta Siciliano,et al.  A fast splitting procedure for classification trees , 1997, Stat. Comput..

[244]  B. Silverman,et al.  Block diagrams and splitting criteria for classification trees , 1993 .

[245]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[246]  Zhiwei Fu,et al.  A computational study of using genetic algorithms to develop intelligent decision trees , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[247]  Gisele L. Pappa,et al.  Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach , 2009 .

[248]  María Cristina Riff,et al.  An Evolutionary Hyperheuristic to Solve Strip-Packing Problems , 2007, IDEAL.

[249]  Yu-Shan Shih Selecting the best categorical split for classification trees , 2001 .

[250]  O. Mangasarian,et al.  Multicategory discrimination via linear programming , 1994 .

[251]  DaeEun Kim,et al.  Structural Risk Minimization on Decision Trees Using an Evolutionary Multiobjective Optimization , 2004, EuroGP.

[252]  Luís Torgo,et al.  A Comparative Study of Reliable Error Estimators for Pruning Regression Trees , 2007 .

[253]  Qiangfu Zhao,et al.  A Study on Efficient Generation of Decision Trees Using Genetic Programming , 2000, GECCO.

[254]  Kristin P. Bennett,et al.  Global Tree Optimization: A Non-greedy Decision Tree Algorithm , 2007 .

[255]  Vili Podgorelec,et al.  Using software metrics and evolutionary decision trees for software quality control , 2001 .

[256]  T.D. Pham,et al.  Analysis of cardiac imaging data using decision tree based parallel genetic programming , 2009, 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis.

[257]  Luís A. Alexandre,et al.  Error Entropy in Classification Problems: A Univariate Data Analysis , 2006, Neural Computation.

[258]  C. Tappert,et al.  A Genetic Algorithm for Constructing Compact Binary Decision Trees , 2009 .

[259]  Marek Kretowski,et al.  Mixed Decision Trees: An Evolutionary Approach , 2006, DaWaK.

[260]  Naresh Manwani,et al.  A Geometric Algorithm for Learning Oblique Decision Trees , 2009, PReMI.

[261]  Edward P. K. Tsang,et al.  Simplifying Decision Trees Learned by Genetic Programming , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[262]  Alex Alves Freitas,et al.  Lexicographic multi-objective evolutionary induction of decision trees , 2009, Int. J. Bio Inspired Comput..

[263]  Simon Kasif,et al.  Induction of Oblique Decision Trees , 1993, IJCAI.

[264]  Walter Böhm,et al.  Exact Uniform Initialization For Genetic Programming , 1996, FOGA.

[265]  Giovanni Seni,et al.  Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions , 2010, Ensemble Methods in Data Mining.

[266]  T. Back Selective pressure in evolutionary algorithms: a characterization of selection mechanisms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[267]  Conor Ryan,et al.  A Less Destructive, Context-Aware Crossover Operator for GP , 2006, EuroGP.

[268]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[269]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[270]  E. M. Rour,et al.  A COMBINED NONPARAMETRIC APPROACH TO FEATURE SELECTION AND BINARY DECISION TREE DESIGN , 2003 .

[271]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[272]  Francisco Herrera,et al.  A Survey on the Application of Genetic Programming to Classification , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[273]  J. R. Quinlan Discovering rules by induction from large collections of examples Intro-ductory readings in expert s , 1979 .

[274]  Walter A. Kosters,et al.  Genetic Programming for data classification: partitioning the search space , 2004, SAC '04.

[275]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[276]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[277]  Sanja Petrovic,et al.  Recent research directions in automated timetabling , 2002, Eur. J. Oper. Res..

[278]  Ramón López de Mántaras,et al.  A distance-based attribute selection measure for decision tree induction , 1991, Machine Learning.

[279]  Andries Petrus Engelbrecht,et al.  Genetic algorithms for the structural optimisation of learned polynomial expressions , 2007, Appl. Math. Comput..

[280]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[281]  Aram Karalic,et al.  Employing Linear Regression in Regression Tree Leaves , 1992, ECAI.

[282]  David W. Corne,et al.  Hyper-heuristic decision tree induction , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[283]  Chandrika Kamath,et al.  Using Evolutionary Algorithms to Induce Oblique Decision Trees , 2000, GECCO.

[284]  Xue Zhong Wang,et al.  Inductive data mining based on genetic programming: Automatic generation of decision trees from data for process historical data analysis , 2009, Comput. Chem. Eng..

[285]  R. Storer,et al.  New search spaces for sequencing problems with application to job shop scheduling , 1992 .

[286]  Nelishia Pillay,et al.  An analysis of representations for hyper-heuristics for the uncapacitated examination timetabling problem in a genetic programming system , 2008, SAICSIT '08.

[287]  Kenneth A. De Jong,et al.  An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms , 1990, PPSN.

[288]  Athanasios Tsakonas,et al.  Hierarchical classification trees using type-constrained genetic programming , 2002, Proceedings First International IEEE Symposium Intelligent Systems.

[289]  Jie Chen,et al.  Pruning Decision Tree Using Genetic Algorithms , 2009, 2009 International Conference on Artificial Intelligence and Computational Intelligence.

[290]  Vili Podgorelec,et al.  The Art of Building Decision Trees , 2000, Journal of Medical Systems.

[291]  Michelangelo Ceci,et al.  Top-down induction of model trees with regression and splitting nodes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[292]  Martijn C. J. Bot Improving Induction of Linear Classification Trees with Genetic Programming , 2000, GECCO.

[293]  Marcel Abendroth,et al.  Data Mining Practical Machine Learning Tools And Techniques With Java Implementations , 2016 .